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Abstract. In parameter learning, a partial interpretation most often
contains information about only a subset of the parameters in the pro-
gram. However, standard EM-based algorithms use all interpretations to
learn all parameters, which significantly slows down learning. To tackle
this issue, we introduce EMPLiFI, an EM-based parameter learning tech-
nique for probabilistic logic programs, that improves the efficiency of
EM by exploiting the rule-based structure of logic programs. In addi-
tion, EMPLiFI enables parameter learning of multi-head annotated dis-
junctions in ProbLog programs, which was not yet possible in previous
methods. Theoretically, we show that EMPLiFI is correct. Empirically,
we compare EMPLiFI to LFI-ProbLog and EMBLEM. The results show
that EMPLiFI is the most efficient in learning single-head annotated
disjunctions. In learning multi-head annotated disjunctions, EMPLiFI is
more accurate than EMBLEM, while LFI-ProbLog cannot handle this
task.

Keywords: Learning from interpretations · Probabilistic logic
programming · Expectation maximization

1 Introduction

Statistical relational learning [8] and Probabilistic Logic Programming [3,4]
have contributed to various representations and learning schemes that rea-
son about objects and uncertain relational structures among them. Popular
approaches include PRISM [10], Independent Choice Logic [13], Bayesian Logic
Programs [11], Markov Logic Networks [14], Logic Programs with Annotated
Disjunctions [17], CP-Logic [16] and ProbLog [7]. Many of these languages
are based on variants of the distribution semantics [15]. They vary in the
way they define the distribution over logic programs but are equally expres-
sive [2]. In this paper, we use ProbLog’s representation. ProbLog has proba-
bilistic facts such as 0.01 :: earthquake, stating that the probability of having
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an earthquake is 0.01, and has clauses such as alarm :− earthquake, stating
that the alarm goes off if there is an earthquake. In addition, ProbLog supports
annotated disjunctions (ADs) such as 0.01 :: alarm(long); 0.19 :: alarm(short);
0.8 :: alarm(none), stating that an alarm has exactly one type of the three types.

ProbLog’s parameter learning approach, LFI-ProbLog, is designed only for
probabilistic facts, and not for ADs. Hence, LFI-ProbLog cannot learn multi-
head AD variables. Even though LFI-ProbLog can learn single-head AD param-
eters, we will show that it is inefficient and in extreme cases, results in incorrect
values. Faria et al. tackled a special case of this efficiency issue for single-head
ADs [6]. In contrast, we provide a more general solution that, in addition, also
covers multi-head ADs. Although our approach is implemented in ProbLog, it
can be applied to other EM-based parameter learning algorithms as what we
exploit is the rule-based structure that is shared by all probabilistic logic pro-
grams.

The contribution is twofold. First, we introduce EMPLiFI, a new parame-
ter learning approach in ProbLog. EMPLiFI correctly learns multi-head ADs
and speeds up learning by exploiting the rule-based structure of logic programs.
Second, we prove that EMPLiFI is correct and illustrate how it reduces EM iter-
ations. We compare EMPLiFI with two other EM-based learners, LFI-ProbLog
and EMBLEM, and show that EMPLiFI is the most accurate in learning multi-
head ADs and takes the fewest EM iterations to converge.

2 Preliminaries

Probabilistic Logic Programming. A ProbLog theory (or program) T con-
sists of a finite set of probabilistic facts F , a finite set of clauses BK and a finite
set of annotated disjunctions AD. A probabilistic fact is an expression p :: f that
states the ground fact f is true with probability p. A clause is an expression
h :−b1, · · · ,bn where h is a literal and b1, · · · ,bn is a conjunction of literals, stat-
ing h is true if b1, · · · ,bn is true. ProbLog defines probability distributions over
ground facts in a Herbrand base LT . The probabilistic facts define a probability
distribution over possible worlds. All ground facts in a possible world W are true
and all that are not in W are false. The probability of a possible world W is
defined as P (W |T )=

∏
fi∈W pi

∏
fi∈LT \W (1−pi). The success probability of a

query q is the sum of the probabilities of the possible worlds that entail q, for-
mally, Ps(q|T )=

∑
I⊆LT ,I|=q P (I|T ). A partial interpretation I is an incomplete

possible world that contains truth values of some (but not all) atoms. If an atom
a (resp. ¬a) is in I, then a is true (resp. false). Otherwise, the truth value of
a is unknown. Hence, a partial interpretation I represents a number of possible
worlds, and the probability of I is the success probability of the conjunction of
the literals in I, i.e. P (I)=Ps(

∧
l∈I l).

Annotated Disjunctions in ProbLog. An annotated disjunctions (ADs) is a
clause with one or more mutually exclusive heads of the form p1 :: h1; · · · ; pk :: hk
where

∑k
i=1 pi =1, stating that if the body is true, exactly one head is made true,
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where the choice of hi is governed by pi. Although the ProbLog language and
semantics allow for ADs, only probabilistic facts (and a transformation) are used
for inference. Hence, most transformations encode ADs as probabilistic facts as
the first step [5,7]. For example, a three-head AD 0.2 :: a1; 0.2 :: a2; 0.6 :: a3 :−b
is encoded as

0.2::h1. 0.25::h2. 1.0::h3.
a1:-b,h1. a2:-b,\+h1,h2. a3:-b,\+h1,\+h2,h3.

where h1, h2 and h3 are hidden facts. The last fact h3 can be dropped for infer-
ence but we keep it in because we will later need it for learning. This encoding
is designed to compute the probabilities correctly for the inference task but is
insufficient for learning and results in incorrect values (see Sect. 3).

3 Learning from Interpretations in ProbLog

In this section, we review LFI-ProbLog and illustrate its two issues. Later, Sect. 4
will introduce a new learning approach that resolves these issues. The parameter
learning task in ProbLog is as below.
Given

– A ProbLog program T (p)=F ∪BK∪AD where F is a set of probabilistic
facts, BK is a set of background knowledge and AD is a set of ADs. p =
〈p1, · · · , pN 〉 is a set of unknown parameters where each parameter is attached
to a probabilistic fact or an AD head.

– A set I of partial interpretations {I1, ..., IM}.

Find maximum likelihood probabilities p̂ for all interpretations in I. Formally,

p̂ = argmax
p

P (I|T (p)) = argmax
p

M∏

m=1

Ps(Im|T (p))

Given initial parameters p0 = 〈p01, · · · , p0N 〉, an Expectation Maximization (EM)
algorithm computes p1, and in this fashion, enumerates a series of estimations
p2, ...,pT . The process terminates after T iterations when the log likelihood does
not improve more than an arbitrary small value ε. LFI-ProbLog, is summarized
by Eq. 1 [7,9], which takes pt to compute pt+1. Intuitively, based on pt, a new
estimate pt+1

n is the expected count of fn being true divided by the total count
of fn, formally,

pt+1
n =

∑M
m=1

∑Km
n

k=1 P (fn,k|Im, T (pt))
∑M

m=1 K
m
n

(1)

where Km
n is the number of ground instances represented by pn :: fn in Im. We

will use the following running examples throughout this paper to illustrate two
issues of LFI-ProbLog and our approach to tackle them.
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Running example 1. Consider the following Smokers program with three param-
eters p = 〈p1, p2, p3〉, stating that a person is a smoker with probability p1, and
any smoker (resp. non-smoker) has cancer with probability p2 (resp. p3).

person(X). p1::smokes(X):-person(X).
p2::cancer(X):-smokes(X),person(X). p3::cancer(X):-\+smokes(X),person(X).

Consider interpretations I1 = {smokes(a), cancer(a)}, I2 = {smokes(b),¬
cancer(b)}, I3 = {¬smokes(c),cancer(c)}, I4 = · · ·= I102 = {¬smokes(·),
¬cancer(·)}. As all interpretations are fully observable, we obtain 〈p1, p2, p3〉
= 〈2/102, 1/2, 1/100〉 by simply counting.

Running example 2. Consider the following Colors program with three parame-
ters p = 〈p1, p2, p3〉 that jointly denote a probability distribution of the color of
a ball.

p1::green;p2::red;p3::blue:-ball. ball.

Given interpretations I1 = {green}, I2 = {red} and I3 = {blue}, we obtain p =
〈1/3, 1/3, 1/3〉 by counting.

The first issue of LFI-ProbLog is efficiency-related. When learning single-
head ADs, LFI-ProbLog takes into account all interpretations, including the
irrelevant ones that do not contain information about the parameter to be
learned. These irrelevant interpretations introduce an undesired inertia in EM
learning, as illustrated in Example 1.

Example 1. For LFI-ProbLog, the Smokers program must be transformed into
the following program with hidden facts h1, h2 and h3.

p1::h1. p2::h2. p3::h3. person(X).
smokes(X):-person(X) h1.
cancer(X):-smokes(X),person(X),h2. cancer(X):-\+smokes(X),person(X),h3.

Given initial parameters p0 = 〈0.1, 0.1, 0.1〉, by applying Eq. 1, we obtain p1 =
〈p11, p12, p13〉 as follows.

p11 =
1+1+0+0×99

102
=

2
102

, p12 =
1+0+.1+.1×99

102
=0.108, p13 =

.1+.1+1+0×99
102

=0.012

By repeatedly applying Eq. 1, we further obtain a series of estimates
p2 = 〈2/102,0.116,0.01〉, · · · , p100 = 〈2/102,0.445,0.01〉. Notice that p2 does not
converge to 0.5 after 100 iterations even though all interpretations are fully
observable. This is resulted from the irrelevant interpretations I3, · · · I102.

The second issue is that LFI-ProbLog does not correctly learn all possible
multi-head ADs. This is because how their probabilities are transformed from p
to ṕ [5] (cf. Sect. 2). This transformation is incorrect in learning as the parame-
ters are not known and must be learned, as illustrated in Example 2.
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Example 2. For LFI-ProbLog, the Colors program must be transformed into
the following program with hidden facts gh, rh and bh, and the given initial
parameters must be transformed. Say, given p0 = 〈0.2, 0.2, 0.6〉, the transformed
probabilities are ṕ0 = 〈0.2, 0.25, 1.0〉.

ṕ1::gh. ṕ2::rh. ṕ3::bh. ball.
green:-ball,gh. red:-ball,\+gh,rh. blue:-ball,\+gh,\+rh,bh.

By applying Eq. 1, we obtain ṕ1 as follows.

ṕ11 =
1 + 0 + 0

3
= 0.333 ṕ12 =

0.25 + 1 + 1
3

= 0.750 ṕ13 =
1 + 1 + 1

3
= 1

We future obtain ṕ2 = 〈0.333, 0.917, 1〉, · · · , ṕ10 = 〈0.333, 1, 1〉, which corre-
sponds to the incorrect AD parameters p10 = 〈1/3, 2/3, 0〉.

4 Learning with Annotated Disjunctions

We propose EMPLiFI, a parameter learning approach in Eq. 2, as a solution to
the issues discussed in Sect. 3. This section illustrates EMPLiFI, and Sect. 5 will
prove EMPLiFI’s correctness.

pt+1
n =

∑
Im∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pt))
∑

Im∈Ipn

∑Jm
n

j=1 P (bn,j|Im, T (pt))
(2)

where

– hn,j and bn,j are the j-th possible ground instance represented by pn :: hn and
the corresponding body in Im

– Jm
n is the total number of ground instances represented by pn :: hn in Im

– Ipn is the set of all relevant interpretations to pn

If the denominator is zero, then pt+1
n will not be updated. Intuitively, based on

pt, a new estimate pt+1
n is the expected count of the head divided by the expected

count of the body. Unlike LFI-ProbLog that assumes all parameters are attached
to a fact, EMPLiFI recognizes and exploits AD rule structures, which enables
efficient EM and multi-head AD learning.

4.1 Relevant Interpretations

At this point, it is important to stress that some interpretations do not contain
information about a rule p :: h :−b. An interpretation I is called irrelevant to p
if the conditional probability components P (hn, bn|·) and P (bn|·) solely depend
on the old probability estimate pt, formally,

P (h, b|I, T (pt)) = P (h, b|T (pt)) and P (b|I, T (pt)) = P (b|T (pt)) (3)
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As irrelevant interpretations slow down learning (see Example 1), it is our aim
to identify them for each parameter.

The dependency set of a ground atom a in a ProbLog theory T , denoted
by depT (a), is the set of all atoms that occur in some SLD-proof of a [7]. The
dependency set of multiple atoms is the union of their dependency sets. A ground
fact f ∈ T is relevant to an interpretation I if it is in the dependency set of I,
namely f ∈ depT (I). Similarly, a ground clause is relevant to I if it is used in the
SLD proof of I. Then, the interpretation-restricted theory, denoted by Tr(I), is
the union of all relevant facts and clauses [9]. A restricted theory is a subset of
the original ground program, in fact, it is usually much smaller than the original
program. Using the restricted theory, we can define relevant interpretations for
learning a parameter.

Definition 1 (Relevant Interpretation) For a ProbLog theory T , an inter-
pretation I is relevant to an atom an ∈ T if and only if an is in the interpretation-
restricted theory Tr(I), namely an ∈ Tr(I).

Since a parameter pn always corresponds a unique atom an in T , we define
pn-relevant interpretations using an, formally, Ipn = {I ∈ I|an ∈ Tr(I)}. We have
defined relevant interpretations for single-head ADs and probabilistic facts.

Example 3. Consider the Smokers program and I2 = {smokers(b),
¬cancer(b)}, the dependency set of I2 is depT (I2) = {h1, h2, smokes(b),
cancer(b)} and the corresponding restricted theory Tr(I2) is

p1::h1. p2::h2. person(b).
smokes(b):-person(b),h1. cancer(b):-smokes(b),person(b),h2.

Therefore, I2 is relevant to p1 and p2 according to Definition 1. We obtain the
relevant interpretation sets for all three parameters as Ip1 = {I1, · · · , I102}, Ip2 =
{I1, I2}, and Ip3 = {I3, · · · , I102}. Given initial parameters p0 = 〈0.1, 0.1, 0.1〉,
we obtain p1 = 〈2/102, 1/2, 1/100〉 after one EM iteration by applying Eq. 2, as
opposed to Example 1.

4.2 Directly Learning Multi-head ADs

Recall that ProbLog’s transformations result in incorrect learning of multi-head
ADs (see Sect. 3). To gain correctness, it is required to maintain mutual exclusiv-
ity in the interpretation-restricted theory. To do so, we define the AD dependency
set, depAD

T (I) ⊇ depT (I) to include also mutually exclusive atoms. Intuitively,
if depAD

T (I) contains an AD head, it must also contain all mutually exclusive
heads and their dependency sets. Then, an AD dependency set defines an AD
interpretation-restricted theory as in Sect. 4.1.

Definition 2 (Relevant Interpretation with AD). For a ProbLog theory T ,
an interpretation I is relevant to an atom an ∈ T if and only if an is in the AD
interpretation-restricted theory T AD

r (I), namely an ∈ T AD
r (I).
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After defining relevant interpretations for ADs, we can now learn multi-head
ADs using Eq. 2.

Example 4. Consider the Colors program and I1 = {green}, the AD dependency
set depAD

T (I1) is {ball, green, red, blue, gh, rh, bh} and the AD restricted the-
ory T AD

r (I1) is

ṕ1::gh. ṕ2::rh. ṕ3::bh. ball.
green:-ball,gh. red:-ball,\+gh,rh. blue:-ball,\+gh,\+rh,bh.

I1 is relevant to p1, p2 and p3 according to Definition 2. Similarly, I2 and I3 are
also relevant to all three parameters. Given initial parameters p0 = 〈0.2, 0.2, 0.6〉,
we obtain p1 = 〈1/3, 1/3, 1/3〉 after one EM iteration by applying Eq. 2.

5 Proofs

Section 5.1 will prove EMPLiFI’s correctness and Sect. 5.2 will provide insight
into how EMPLiFI improves efficiency of EM parameter learning.

5.1 Correctness

We start from the EM algorithm for Bayesian Networks [12], i.e. Eq. 4, that
differs from EMPLiFI by learning from all interpretations. Since Eq. 4 is cor-
rect [12], we can prove the correctness of EMPLiFI, i.e. Eq. 2, by showing they
converge to the same values, i.e. Proposition 1.

pt+1
n =

∑M
m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pt))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pt))
(4)

Proposition 1. Given a program T , a set of partial interpretations I, and ini-
tial parameters p0. Let pt,1 and pt,2 be the parameter estimates generated by
Eqs. 2 and 4, respectively. It is true then limt→∞ pt,1n = pt,2n

Proof. We prove by induction. When t=0, p0,1 =p0,2 =p0 holds. Assume that
when t= k, pk,1 =pk,2 holds. Then, for t= k+1, by applying Eq. 2, we obtain
pk+1,1
n , which we rewrite using A and B to save space.

pk+1,1
n =

∑
I∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|I, T (pk,1))
∑

I∈Ipn

∑Jm
n

j=1 P (bn,j|I, T (pk,1))
=

A

B
(5)
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We finish the proof by showing that pk+1,2
n also converges to A

B .

pk+1,2
n =

∑M
m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pk,2))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pk,2))
( ∵ Equation 4)

=
∑M

m=1

∑Jm
n

j=1 P (hn,j, bn,j|Im, T (pk,1))
∑M

m=1

∑Jm
n

j=1 P (bn,j|Im, T (pk,1))
( ∵ pk,1 =pk,2)

=
A+

∑
I &∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|I, T (pk,1))

B +
∑

I &∈Ipn

∑Jm
n

j=1 P (bn,j|I, T (pk,1))
( ∵ Equation 5)

=
A+

∑
I &∈Ipn

∑Jm
n

j=1 P (hn,j, bn,j|T (pk,1))

B +
∑

I &∈Ipn

∑Jm
n

j=1 P (bn,j|T (pk,1))
( ∵ Equation 3)

=
A+M2 × P (hn, bn|T (pk,2))
B +M2 × P (bn|T (pk,2))

(LetM2 =
∑

I &∈Ipn

Jm
n and ∵ pk,1 =pk,2)

=
A+M2×P (hn, bn|T (pk+1,2))
B+M2×P (bn|T (pk+1,2))

( ∵ pk,2 =pk+1,2) (6)

By definition,

pk+1,2
n =

P (hn, bn|T (pk+1,2))
P (bn|T (pk+1,2))

(7)

By combining Eqs. 6 and 7, we obtain pk+1,2
n = A

B .

5.2 Convergence Rate

We will prove that EMPLiFI always updates the parameters by a larger margin
by considering only relevant interpretations, namely Proposition 2.

Proposition 2. Given a program T , a set of interpretations I, and parameter
estimates pt. Let pt+1,1 and pt+1,2 be the next parameter estimates generated
by Eqs. 2 and 4, respectively. It is true that either pt+1,1

n ≤ pt+1,2
n ≤ ptn or

pt+1,1
n ≥ pt+1,2

n ≥ ptn holds.

Proof. Following the same reasoning as in Proposition 1, we have

pt+1,1
n =

A

B
and pt+1,2

n =
A+M2 × P (hn, bn|T (pt))
B +M2 × P (bn|T (pt))

We also have P (hn, bn|T (pt))= ptn×P (bn|T (pt)) by definition. Hence,

pt+1,2
n =

pt+1,1
n ×B+M2×ptn×P (bn|T (pt))

B+M2×P (bn|T (pt))
=

pt+1,1
n ×B+ptn×C

B+C
(8)

where C =M2×P (bn|T (pt)). As B,C ≥ 0, we have proven Proposition 2.
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Equation 8 illustrates that irrelevant interpretations create an inertia, namely
ptn×C, where ptn is the old estimate and C is proportional to the number of
irrelevant instances. This inertia not only slows down learning, but also causes
numerical instability and results in incorrect values when C >>B as standard
EM terminates before reaching the true probabilities (cf. Example 1).

6 Experiments

There are two well-known parameter learning algorithms and implementations
for probabilistic logic programming: EMBLEM [1] and LFI-ProbLog [7,9]. We
compare EMPLiFI to these two learners to answer the following questions.

Q1 How much does EMPLiFI speed up EM learning?
Q2 How well does EMPLiFI handle multi-head ADs?
Q3 How well does EMPLiFI handle missing data?
Q4 Does EMPLiFI require more computational resources?

Programs

Emergency Power Supply (EPS) [18] is propositional, acyclic and contains 24
probabilities1. It can be handled by all learner as it has no multi-head ADs.

0.95::lowSupply:-a1. 0.95::highSupply:-a2,a3.
1.0::lowSupply:-highSupply. 0.95::highSupply:-a2,a4.
0.95::failure:-highLoad,\+highSupply. 0.95::highSupply:-a3,a4.
0.95::failure:-lowLoad,\+lowSupply. 0.75::a2:-a3.
0.98::emergency:-\+a3,\+a4. 0.75::a2:-a4.
0.7::ll1:-emergency. 0.85::a1.
0.7::pl1:-emergency. 0.95::a3.
0.6::highLoad:-ll2,ll3,pl2,pl3. 0.95::a4.
0.95::lowLoad:-highLoad. 0.8::ll2.
0.8::lowLoad:-ll1, pl1. 0.8::pl2.
0.8::lowLoad:-ll2, pl2. 0.8::ll3.
0.8::lowLoad:-ll3, pl3. 0.8::pl3.

Smokers [7] contains 4 probabilities. It has no multi-head ADs but is relational
and cyclic. We omit ground facts person/1 and friend/2 to save space.

0.2::smokes(X):-person(X).
0.3::smokes(X):-friend(X,Y),smokes(Y),person(X),person(Y),X\=Y.
0.3::cancer(X):-smokes(X),person(X).
0.1::cancer(X):-\+smokes(X),person(X).

Dice is an AD with 6 heads. The dice has a higher change of throwing a six.

0.15::one;0.15::two;0.15::three;0.15::four;0.15::five;0.25::six.

1 http://www.machineryspaces.com/emergency-power-supply.html.

http://www.machineryspaces.com/emergency-power-supply.html
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Colors consists of a single-head AD and two multi-head ADs. To learn this
program, one must perform EM, even in the fully observable case because the
AD bodies are not mutually exclusive.

ball. 0.8::green:-ball. 0.8::large;0.1::medium;0.1::small.
0.3::large; 0.6::medium; 0.1::small:- green.

Experimental Setup and Results

Experiments were run on a 2.4GHz Intel i5 processor. Learning terminates with
ε=1e−6. All interpretations are sampled from the above programs. Partial inter-
pretations are generated by randomly discarding literals in the interpretation,
given a missing rate m ∈ [0, 1]. Whenm = 0, interpretations are fully observable.
We obtain average measurements by executing all tasks using 5 random seeds.
EMPLiFI and LFI-ProbLog programs are compiled as SDDs. Tables 1, 2 and 3
list parameter errors and EM iteration counts. Table 4 lists compilation, evalu-
ation, total times and circuit sizes, which refer to node counts.

Q1 How Much Does EMPLiFI Speed up EM Learning? We run all three
learners on Smokers and 100 fully observable interpretations. Table 1a shows that
EMPLiFI and LFI-ProbLog converge to the same values, but EMPLiFI takes
fewer EM iterations. This is consistent with Propositions 1 and 2. EMBLEM is
not accurate in Table 1a. Since EMBLEM is not designed to learn all parameters
at the same time [1], we split this task into four sub-tasks where each task learns
one parameter and all other parameters are set to ground truth values. Results
are in Table 1b, where EMBLEM is still the least accurate.

Table 1. Smokers. EMPLiFI is the most accurate and takes the fewest EM cycles.

param empl lfip embl

name err err err

smo[.2] -.015 -.015 -.200

smo[.3] .046 .046 .092

can[.3] -.025 -.025 -.142

can[.1] -.055 -.055 -.049

#iters 19.6 51.2 108.0

(1a) Learning all parameters

param empl lfip embl

name err iters err iters err iters

smo[.2] -.007 12.4 -.007 12.4 -.200 171.0

smo[.3] .039 20.0 .039 56.4 -.083 38.0

can[.3] -.025 3.0 -.025 41.6 -.178 21.0

can[.1] -.055 3.0 -.055 14.6 -.100 61.0

(1b) Learning one parameter

Q2 How Well Does EMPLiFI Handle Multi-head ADs? This experiment
shows that EMPLiFI is more accurate than EMBLEM and LFI-ProbLog in
learning multi-head ADs. We run all three learners on Dice (Table 2) and Colors
(Table 3) with 1k sampled interpretations under two settings. The first setting



388 W.-C. Yang et al.

Table 2. Dice. LFI-ProbLog fails when
only positive literals are given.

Param name Fully observable Only positive

empl lfip embl empl lfip embl

on[.15] −.012 −.012 −.012 −.012 .85 −.012

tw[.15] −.017 −.017 −.017 −.017 .85 −.017

th[.15] .010 .010 .010 .010 .85 .010

fo[.15] .000 .000 -.000 .000 .85 .000

fi[.15] −.003 −.003 −.003 −.003 .85 −.003

si[.25] .022 .022 .021 .022 .75 .022

#iters 3.0 3.0 6.99k 2.0 2.0 58.0

Table 3. Colors. EMPLiFI is the most
accurate.

Param name Fully observable Only positive

empl lfip embl empl lfip embl

gr[.8] −.013 −.013 −.048 .072 .072 .200

la[.3] −.012 −.078 −.064 −.127 −.148 −.300

me[.6] .015 .017 −.026 .100 .170 .146

sm[.1] −.003 −.005 .088 .028 .210 .154

la[.8] −.008 .002 −.009 .046 .077 .200

me[.1] −.008 −.015 −.100 −.045 −.047 −.100

sm[.1] .015 .012 −.099 −.001 .146 −.100

#iters 25.4 14.4 25.6k 25.0 14.4 171.0

Fig. 1. The average error of EPS parameters decreases over EM iterations under all set-
tings. EMPLiFI generally takes fewer iterations to converge compared to LFI-ProbLog.

learns from full interpretations (e.g. {one,¬two, · · · , ¬six}), and the second
setting learns from only positive literals (e.g. {one}). The second setting is fully
observable as the truth values of all missing literals can be derived. Table 2 shows
that when given all literals, all learners can learn multi-head ADs. However, when
given only positive literals, LFI-ProbLog cannot learn. Table 3 shows an example
that EMBLEM also fails at learning multi-head ADs.

Q3 How Well Does EMPLiFI Handle Missing Data? This experiment
shows that EMPLiFI reduces EM iterations in the partially observable setting.
We run EMPLiFI and LFI-ProbLog on EPS and 10k interpretations for a series
of missingness values in [0, 1]. EMBLEM cannot handle this task with the limit
of 3.5 GB memory. Figure 1 shows that EMPLiFI converges much sooner than
LFI-ProbLog given either full or partial interpretations.

Q4 Does EMPLiFI Require More Computational Resources? We run
EMPLiFI and LFI-ProbLog on EPS with 10k interpretations for a series of
missingness values. Table 4 shows that EMPLiFI has larger circuits thus longer
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compilation and evaluation time. This is because EMPLiFI includes informa-
tion of mutually exclusive AD heads. However, EMPLiFI achieves shorter total
execution time compared to LFI-ProbLog as it reduces EM iterations.

Table 4. EPS. The total runtime is the sum of compilation and evaluation time.

missing rate emplifi lfiproblog

Size Comp Eval Iters Eval/Iter Total Size Comp Eval Iters Eval/Iter Total

0.0 75.0 16.6 91.1 199.4 5.0 107.6 58.0 6.1 106.3 406.6 0.3 112.4

0.1 75.9 233.6 986.2 114.0 8.7 1219.8 57.1 92.6 6865.40 1447.6 4.7 6957.9

0.3 74.9 455.1 5338.4 245.6 21.7 5793.4 53.7 165.3 15320.8 1765.2 8.7 15486.2

0.5 67.6 438.3 9133.7 418.6 21.8 9571.9 47.0 140.8 15651.8 1920.8 8.2 15792.6

0.7 50.5 265.54 6399.1 551.8 11.6 6664.6 35.3 94.3 12029.1 2229.8 5.4 12123.4

0.9 24.5 45.4 473.4 243.6 1.9 518.8 18.2 20.1 502.7 579.4 0.9 522.8

7 Related Work

We review EM-based parameter learners. PRISM [10] is one of the first EM learn-
ing algorithms, however, it imposes strong restrictions on the allowed programs.
LFI-ProbLog [7,9] performs parameter learning of probabilistic logic programs.
Before learning AD parameters, it must transform the program, which intro-
duces latent variables that slow down learning. In extreme cases, it can converge
to incorrect values. Asteroidea [6,18] tackles this issue by avoiding EM iterations
for probabilistic rules, which is a specialization of EMPLiFI that supports single-
head ADs, but not multi-head ADs. EMBLEM [1] is another EM-based param-
eter learner. It can naturally express and learn AD parameters as it is based
on the language of Logic Programs with Annotated Disjunctions [17]. Similar
to the aforementioned work, EMBLEM uses knowledge compilation techniques.
However, it differs in the construction of BDDs as it focuses on learning a single
target predicate. When multiple target predicates are present, EMBLEM can
converge to incorrect values.

8 Conclusion

We have introduced EMPLiFI, an EM-based algorithm for probabilistic logic
programs. EMPLiFI supports multi-head ADs and improves efficiency by learn-
ing from only relevant interpretations. Theoretically, we have proven that
EMPLiFI is correct. Empirically, we have shown that EMPLiFI, compared to
LFI-ProbLog and EMBLEM, is more accurate in learning multi-head ADs, and
takes fewer iterations to converge. EMPLiFI is available in the ProbLog2 repos-
itory.

2 https://github.com/ML-KULeuven/problog.

https://github.com/ML-KULeuven/problog
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