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Abstract. As machine learning models, specifically neural networks,
are becoming increasingly popular, there are concerns regarding their
trustworthiness, especially in safety-critical applications, e.g., actions
of an autonomous vehicle must be safe. There are approaches that can
train neural networks where such domain requirements are enforced
as constraints, but they either cannot guarantee that the constraint
will be satisfied by all possible predictions (even on unseen data) or
they are limited in the type of constraints that can be enforced. In
this work, we present an approach to train neural networks which can
enforce a wide variety of constraints and guarantee that the constraint
is satisfied by all possible predictions. The approach builds on ear-
lier work where learning linear models is formulated as a constraint
satisfaction problem (CSP). To make this idea applicable to neural
networks, two crucial new elements are added: constraint propagation
over the network layers, and weight updates based on a mix of gradi-
ent descent and CSP solving. Evaluation on various machine learning
tasks demonstrates that our approach is flexible enough to enforce a
wide variety of domain constraints and is able to guarantee them in
neural networks.

1 Introduction

Widespread use of state-of-the-art machine learning (ML) techniques
has given rise to concerns regarding the trustworthiness of these mod-
els, especially in safety-critical and socially-sensitive domains. For
example, in autonomous vehicles that employ ML approaches to
predict the next action, the actions must be safe. Such domain require-
ments can often be formulated as logical constraints on combinations
of inputs and outputs (e.g., whenever the input satisfies some condi-
tion A, the output must satisfy condition B). Crucially, these domain
constraints must be satisfied for all possible inputs to the model, not
just the training data. This has motivated researchers to develop ap-
proaches that can train ML models that satisfy a given constraint for
all possible predictions.

A general approach to enforcing constraints in ML models is to in-
clude a regularization term in the cost function, which typically adds a
cost for every violation of a constraint in the training set (e.g., [31, 7]).
Such an approach can reduce the number of violations in the training
set, but it does not necessarily eliminate them. Moreover, even when it
does, this does not guarantee that other instances (outside the training
set) cannot violate the constraint. Alternatively, for some model types,
such as neural networks, the architecture of the model can be chosen
in such a way that certain types of constraints are guaranteed to be
satisfied for each possible input (not just training data) ([26, 17]). But
this is typically possible only for specific combinations of model and

constraint types.
This raises the question of whether generality and certainty can

be combined. Is it possible to come up with a generally applicable
approach that guarantees the satisfaction of constraints not only on
the training set but on the entire input space, and this for any kind
of model? A step in this direction was made by sade, who propose
a relatively general solution for linear models. Their approach trans-
lates the learning problem into a MaxSMT setting. MaxSMT stands
for Maximum Satisfiability Modulo Theories. It is an extension of
SAT solving that can take background theories into account (e.g., for
reasoning about the real numbers) and that distinguishes soft and hard
constraints: it returns a solution that satisfies all hard constraints and
as many soft constraints as possible. sade model the requirements as
hard constraints and maximize the fit to the data using soft constraints.
Their approach works for a wide range of constraint types but only
handles linear models, and assumes a bounded input domain.

In this paper, we substantially extend the applicability of that ap-
proach by showing how it can be used to train feedforward neural
networks. Two key modifications to the network’s architecture and
training procedure suffice for achieving this: (1) propagating the con-
straints over the network layers to the last layer, which involves adding
skip connections ([15]) that copy the input to the penultimate layer
and deriving bounds on the penultimate layer from the bounds on
the input ([27]), and (2) training the network using a hybrid proce-
dure that uses MaxSMT to determine the weights in the output layer
and gradient descent for all other weights. We demonstrate that with
these changes, neural networks can be trained that have good per-
formance and guarantee the satisfaction of given constraints. In the
following, we first describe the problem setting, then briefly describe
the existing approach that we build on, before detailing our approach.
Afterward, we compare our approach to related work and evaluate it
experimentally.

2 Problem Statement

In this paper, we focus on semantic constraints which constrain the
behavior of the model: the predictions are required to adhere to cer-
tain requirements, e.g. safety constraints ([19]), structured output
constraints ([31]), and hierarchical constraints ([17]). Specifically,
we focus on domain constraints: constraints that must hold for all
instances in the domain. We assume that the constraints can be written
with universally quantified logic formulas. In particular, we consider



the constraints of the form:

K : @x P
n

ą

i“1

rli, uis,x |ù P ñ fwpxq |ù C (1)

Which states that if an input x satisfies a condition P , the output must
satisfy a condition C. An example of a safety constraint that can be
represented in this way is: “if an object comes in front of a moving
vehicle, the vehicle must stop”. Solving for such a constraint exactly
using specific constraint solvers allows us to enforce the constraint for
all possible inputs. The reason for focusing on this type of constraints
is mostly practical: the constraint solving technology we use was
found to scale well enough for these types of constraints. It is not a
theoretical limitation: any constraint that can be handled effectively by
current constraint solving technology can be handled by the approach
we develop. As demonstrated later in section 6, our chosen constraint
formulation (equation 1) already provides us with a variety of tasks to
work with.

To make the search procedure tractable, and because features in
ML problems are typically bounded (e.g., a pixel in an image takes a
value in r0, 255s), we use bounded domains

Śn
i“1rli, uis instead of

Rn. As a natural choice, the training data D Ď X
Ś

Y can be used
to calculate these bounds, i.e. li “ minDpxiq & ui “ maxDpxiq.
We rely on the SMT solver Z3 ([24]) to solve such constraints. Other
prominent constraint-solving paradigms like MILP and CP do not
support such constraints over continuous domains ([25]).

We are now ready to formulate our problem statement:

Definition 1. Learning problem. Given a training set D Ď X
Ś

Y ,
a set of domain constraints K, a loss function L, and a hypothesis
space containing functions fw : X Ñ Y ; find w such that fw satisfies
constraints in K and Lpfw, Dq is minimal among all such fw.

fw is assumed to be a feedforward neural network. The output layer
is real-valued without any activation, and a softmax layer is used to
calculate class probabilities for classification problems. The language
of the constraints in K is a subset of first-order logic which allows for
universal quantifiers. In practice, we focus on the constraints of the
form in equation 1, and K can be a set of multiple such universally
quantified constraints.

3 Background - Satisfiability Descent (SaDe)
Satisfiability (SAT) is the problem of finding a solution that satisfies a
given Boolean formula, e.g. ␣a_ b. Satisfiability Modulo Theories
(SMT) extend SAT such that formulas can be expressed in other
theories, such as Real Arithmetic, e.g., pa` b ą 3q ^ pb ă 1q with
real a and b. Maximum Satisfiability (MaxSMT) generalizes the SMT
problem: given a set of hard constraints H and soft constraints S, it
aims to find a solution that satisfies all constraints in H and as many
as possible in S.

Our work builds on SaDe ([11]) which is a learning algorithm that
can enforce constraints in linear models and guarantee satisfaction.
SaDe modifies the parameter update process of the mini-batch gradi-
ent descent ([9]). Unlike gradient descent, which updates the solution
in the direction that minimizes the loss, SaDe solves a MaxSMT prob-
lem to find the solution at each iteration, which is formulated in such a
way that its solution satisfies the domain constraint and is close to the
solution that gradient descent might lead to. At each iteration, a local
search space is defined for the MaxSMT problem around the previous
solution. This search space is a fixed-sized n-cube where each edge
of the n-cube is a hyperparameter called maximal step size that upper

bounds the size of the update in each dimension (illustrated for two
parameters in figure 1(a)). SaDe iteratively improves the performance
while learning solutions that satisfy the constraint. Formulations of
the MaxSMT problem and the local search space at each iteration are
provided next.

Formulation of MaxSMT problem: A MaxSMT problem is de-
fined for a batch of instances in each iteration, where the soft con-
straints encode a certain quality of fit of the model on the instances
in the batch, and the domain constraints are hard constraints. A soft
constraint, for a given instance px, yq, is defined as a logical constraint
that is fulfilled when the prediction of the model fw for x is “suffi-
ciently consistent” with the true label y. For regression, given some
error e, a soft constraint is defined as: |y ´ e| ď fwpxq ď |y ` e|.
For classification, the sign of fwpxq is assumed to be the indicator of
the class and the magnitude indicates the certainty of prediction, the
soft constraint takes the form (for a threshold τ ):

fwpxq ą τ if y “ 1

fwpxq ă ´τ if y “ ´1

For each instance, multiple soft constraints are formulated for different
values of the error e or threshold τ . Satisfying a maximum of these
soft constraints, which is what the MaxSMT problem tries to achieve,
correlates with minimizing the prediction loss. Thus, the solution
to this MaxSMT problem at every iteration reduces the loss while
satisfying the domain constraints.

Local search space: At every iteration, the MaxSMT problem
searches for the next solution in a local search space defined by the
n-cube around the previous solution. It is encoded as an additional
hard constraint in the MaxSMT problem, with a “box” constraint,
which states that the next solution must be inside the axis-parallel box
defined by ŵ and ŵ ´ α ¨ sgnpgq, where the sign function is applied
component-wise to a vector (a modified sign function is used where
sgnp0q “ 1), ŵ is the previous solution, g is the gradient of the loss
at ŵ, and α is the maximal step size. The box constraint serves two
important purposes. Firstly, it provides a general direction in which
the loss is minimized, as the box in each dimension is aligned with
the negative gradient. Secondly, it stabilizes learning by limiting the
size of the updates. Interestingly, using a regularized loss instead of a
standard loss has no impact as the constraint is satisfied at each step
of training, making the regularization 0.

SaDe is limited to training linear models. Training neural networks
with the same procedure would require solving the MaxSMT problem
with highly non-linear soft constraints, e.g. |y´e| ď fwpxq ď |y`e|
where fwpxq is a neural network, which is not possible with state-of-
the-art SMT solvers.

4 DeepSaDe: Deep Satisfiability Descent

We now present our approach DeepSaDe, which utilizes the MaxSMT
framework proposed in sade to train neural networks with constraints.
DeepSaDe exploits the structure of neural networks, which transform
the input domain through a series of non-linear layers before a final
linear layer maps it to the output. As the network output only explicitly
depends on the last layer, enforcing the constraint on the last layer is
sufficient to enforce the constraint on the network. DeepSaDe, there-
fore, uses batch learning with a hybrid procedure that uses MaxSMT
to determine the weights in the last layer and gradient descent for all
other weights. In the following, we introduce some notation before
we formalize the MaxSMT problem in the last layer in section 4.1,
and then detail the learning algorithm in section 4.2.



(a)
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Figure 1: (a.) Illustration of SaDe: each grey quadrant represents
the local search space for the MaxSMT problem (maximal step size:
α), defined by the gradients of the loss, the green points are the
solutions found with MaxSMT; (b.) DeepSaDe Architecture: Last
layer is updated using the MaxSMT framework and the layers before
are updated with gradient descent. The input features relevant to the
domain constraint (in green) are mapped to the penultimate layer via
skip connections.

fw is a fully-connected neural network with k layers such that
fwpxq “ hkphk´1p...h1pxq...qq for input x P X , where hn is the
nth layer. The input to the nth layer is xpnq

“ hn´1p...h1pxq...q,
where xp1q

“ x and the latent input space for the hn is represented
by X pnq, where X p1q

“ X . The size of a layer, |hn|, is the number
of neurons in it. Weight and bias parameters of hn are denoted by
matrices W pnq and Bpnq of dimensions |hn´1| ˆ |hn| and 1ˆ |hn|

respectively (|h0| “ |x
p1q
|). Elements of W pnq and Bpnq are referred

with lower-case letters.

4.1 Formulation of the maximum satisfiability problem
at the last layer of the network

To formalize the MaxSMT problem for the last layer, it is necessary to
express both the soft constraints and the hard constraint (domain con-
straint) in terms of the latent inputs xpkq rather than the original inputs
xp1q. The soft constraint at the last linear layer can be formulated in a
similar way to what was presented in section 3. Specifically, for a re-
gression task, the constraint is given by |y´e| ď hkpx

pkq
q ď |y`e|,

whereas for classification, it takes the form of:

hkpx
pkq
q ą τ if y “ 1

hkpx
pkq
q ă ´τ if y “ ´1

To formulate the hard domain constraints, we propose a method for
translating each original constraint K (equation 1) into a constraint
K’ for the MaxSMT problem at the last layer, given the parameters
of layers h1, . . . , hk´1, such that a solution to K’, combined with
h1, . . . , hk´1, is a solution to K.

K1 : @x1
P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s,x1
|ù P ñ hkpx

1
q |ù C (2)

Here x1 represent the quantified latent variable in the domain of X pkq

bounded by
Ś|hk´1|

i“1 rl
pkq

i , u
pkq

i s. We explain how this translation is
achieved in the next two paragraphs. Given a network, with this
translation, the last layer of a network can be updated to satisfy the
constraint by the network.

Domain Bound Propagation: To formulate K1, we first consider
the bounds of the quantified variable for the latent space of X pkq. The
bounds of the latent space must be such that enforcing the constraint
within these bounds enforces the constraint on the original input
bounds. To construct such latent bounds, we rely on interval arithmetic
([27]). This involves calculating the bounds of the output of a layer
based on the bounds of the input and the layer parameters, such that
any input to the layer takes the output value within the output bounds.
Given the lower and upper bounds lpnq and upnq for the input xpnq of
the layer hn, following the approach used in gowal2018effectiveness,
the bounds for the output xpn`1q are computed as (more details in
Appendix A.1):

l
pn`1q

i “ actpbpnq

i `
ÿ

j:w
pnq
j,i ě0

w
pnq

j,i l
pnq

j `
ÿ

j:w
pnq
j,i ă0

w
pnq

j,i u
pnq

j q

u
pn`1q

i “ actpbpnq

i `
ÿ

j:w
pnq
j,i ě0

w
pnq

j,i u
pnq

j `
ÿ

j:w
pnq
j,i ă0

w
pnq

j,i l
pnq

j q
(3)

Where ‘act’ is the activation function (like ReLu, Sigmoid, and Tanh).
Given the bounds of the input space, the bounds for the latent space
X pkq can be calculated recursively. Enforcing a constraint within the
latent bounds enforces the constraint on any input within the input
bounds.

Identity Mapping of Relevant Features: The translation also
takes into account that some domain constraints may be dependent on
the input space, e.g., “if an object comes in front of the vehicle, the
vehicle must stop”. To encode such conditions in K1 (i.e., x1

|ù P ),
we make the relevant features, i.e. the features that are needed to
encode the property P , available at the latent space X pkq. For this,
we use skip-connections ([15]) that map these features to the second
to last layer hk´1 using an identity mapping, as illustrated in figure
1(b). The network, consequently, is no longer fully-connected and
these features take the same value as the input. These mapped features
become a part of X pkq and the input property can be expressed at
the last layer. These features are identified in advance. Finally, as the
output of the network is the same as the output of the last layer, the
constraint on the network output can be encoded with hkpx

1
q. This

completes the formulation of K1.

4.2 Learning Algorithm

We now present the algorithm while referring to the pseudo-code in
algorithm 1. DeepSaDe modifies mini-batch gradient descent ([9]),
where forward and backward pass at every iteration (lines 5-7) are
kept the same, but the parameter update is split into two parts. First,
only the last layer’s parameters are updated to satisfy the domain



Algorithm 1 Deep Satisfiability Descent (DeepSaDe)
input: training data D, validation data V , domain constraints K,
batch size b, epochs e, loss L, maximal step size α, learning rate η,
line search steps s

1: fŴ p.q: Model initialized with a standard approach
2: K1 = TranslateDomainConstraint(K, fŴ p.q)
3: Update Ŵ such that Ŵ pkq

|ù K1

4: restart = False; Ŵout = undefined; Partition D into batches of
size b

5: for each epoch do
6: for each batch B in D do
7: G “ ∇LpŴ q
8: K1 = TranslateDomainConstraint(K, fŴ p.q)
9: if restart then

10: Randomly flip the sign of each element of Gpkq

11: end if
12: Ŵ pkq

“ undefined
13: // try line search, if no solution use MaxSMT
14: let Wi “ Ŵ pkq

´ ηGpkqi{s, for i “ 1, 2, . . . , s
15: if ti |Wi |ù K1

u ­“ H then
16: Ŵ pkq

“ Ŵmaxti | Wi|ùK1u

17: else
18: GS “ sgnpGpkq

q

19: S = SoftConstraints(hk´1p...h1pBq...q)
20: H “ tW pkq

P BoxpŴ pkq, Ŵ pkq
´ αGSqu YK1

21: // assuming that MaxSMT returns undefined if unsatisfi-
able

22: Ŵ pkq
“MaxSMTpS,Hq

23: end if
24: if Ŵ pkq is undefined then
25: // no solution found, restart in another direction
26: restart = True
27: else
28: // remember best solution found
29: if evalpfŴ , V q ą evalpfŴout

, V q then
30: Ŵout “ Ŵ
31: end if
32: // perform gradient descent on earlier layers
33: for n “ 1, ..., k ´ 1 do
34: W pnq

“ Ŵ pnq
´ η ˚ Gpnq

35: end for
36: restart = False
37: end if
38: end for
39: end for
40: return fŴout

p.q

constraint using the MaxSMT formulation presented in section 4.1
(lines 8-27) (details in next paragraph). Second, the earlier layers
are updated using gradient descent to optimize predictive loss (lines
33-35). Importantly, after the latter update, the network does not
guarantee constraint satisfaction due to changes in the latent space of
the last layer, used to formulate the MaxSMT problem. Therefore, the
network before the latter update is used for evaluation and a validation
set is used to select the best model (lines 29-31).

For updating the last layer, first, a line search is used along the
vector that minimizes the prediction loss, and a fixed number of
candidate solutions, from furthest to closest, are checked if they satisfy
K1 and first one that does is picked (lines 14-16). If this search does

not yield a solution, the MaxSMT problem is formulated based on
the inputs to the last layer (section 4.1), and a solution is searched
in the local search space around the previous solution defined based
on the gradients calculated during the backward pass (lines 18-23)
(similar to the local search space in SaDe). Line search is employed
first because checking if a point satisfies a constraint is faster than
searching for the solution in a domain, finding a solution by merely
checking a few candidate points speeds up learning.

Sometimes a solution for the last layer cannot be found because the
MaxSMT problem could not be solved within the local search space,
possibly due to the gradient pointing to a solution space that violates
the constraint. In such cases, a restart procedure is initiated where
the signs of the gradients are randomly flipped (lines 9-11, 24-26)
to randomize the direction of the update. This may slightly decrease
predictive performance, but it effectively restarts the learning process
when it gets stuck.

Since our approach is iterative, starting from an initial configuration
that satisfies the domain constraint is crucial. Otherwise, we may
begin in a solution space far from the constrained space, leading to
no updates. We ensure this by first initializing the network using a
standard method ([14]) (line 1), and then updating the weights of
the last layer that satisfy the translated constraint K1 (lines 2-3). It
is important to note that we are solving a satisfiability problem here,
not the maximum satisfiability problem, as we are not using any soft
constraints for this purpose.

5 Related Work

A standard approach for enforcing constraints in ML models is
regularization, where a penalty is added to the prediction loss
whenever the model makes a prediction that violates the constraint
(p1´ λq ˚ loss` λ ˚ regularization). xu2018semantic propose a reg-
ularization defined on the weighted model count (WMC) ([4]) of
the constraint defined over the network output given the predicted
probabilities. diligenti2017semantic and serafini2016logic propose
a fuzzy logic-based regularization for constraints in first-order logic.
There are many other regularization approaches in the literature, e.g.
fischer2019dl2, hu2016harnessing, stewart2017label. Regularization
can enforce a variety of constraints, but it does not guarantee con-
straint satisfaction. Additionally, high regularization loss with a large
value of λ may provide stronger constrain satisfaction but impacts the
predictive performance negatively.

Some approaches guarantee constraints by construction but are
generally limited to enforcing specific types of constraints. For ex-
ample, monotonic lattices ([13]), deep lattice networks ([32]), and
COMET ([26]) are approaches to enforce monotonicity in neural
networks; leino2022self & lin2020art propose approaches to satisfy
some safety specifications. A more general approach, MultiplexNet,
was proposed in hoernle2022multiplexnet. They use a multiplexer
layer to satisfy constraints in disjunctive normal form (DNF). How-
ever, DNF representation is limiting as certain constraints have worst-
case representations in DNF which may lead to exponentially many
terms. Additionally, constraints conditioned on the input space cannot
be enforced. Another approach, DeepProbLog ([22]), trains neural
networks within the ProbLog framework, where constraints can be
enforced with ProbLog. However, it is limited to modeling discrete
variables, and cannot model regression problems.

Our work relates to combinatorial optimization approaches as we
use a MaxSMT-based approach. These approaches, however, except
sade, are limited to discrete models like decision trees ([12, 2, 28,
6]) and decision sets ([33, 18]). Maximum satisfiability, specifically,



has also been used in various ML tasks ([1, 5, 21]). None of these,
however, focus on training neural networks.

There are approaches that rely on the idea of bound propagation,
also used in our work, to train adversarially robust neural networks
([10, 34, 30]). However, the constraints that can be enforced are
limited to input-output bounds (if the input is in a given bound, the
output should be in a specific bound). Our approach is more general
and can, in theory, handle any constraint that can be written as an
SMT formula, e.g., structured output constraints.

Finally, there are approaches to verify if a network satisfies a con-
straint ([20, 29, 3]). DeepSaDe trains networks that do not require
verification because constraints are guaranteed by construction.

6 Experiments
We evaluate multiple use cases in various ML tasks with complex do-
main constraints. We first outline the research questions, then describe
the use cases, our evaluation method, and the results.

Q1: Can existing methods satisfy domain constraints for all
predictions in practice, even if they do not guarantee it?
Q2: How does the predictive performance of DeepSaDe models
compare to the baselines?
Q3: Do the DeepSaDe models have a higher training time
compared to the baselines?

6.1 Use Cases

UC1, UC2 & UC3 are from sade, UC4 is novel, and UC5 is from
xu2018semantic.

UC1: A multi-target regression to predict 5 household expenses
using 13 attributes, with 41417 data instances. We enforce two con-
straints: “sum of all the expenses must be smaller than the total
household income” and “going out expense must be smaller than 5%
of the household income”.

UC2: A binary classification problem of predicting if a person
should be given a loan or not based on 13 attributes, with 492 data
instances. We enforce the constraint: “a person with a salary less
than 5000$ and an absent credit history must be denied a loan”.

UC3: A multiclass classification problem to classify a song to one
of 5 music genres based on 13 attributes, with 793 data instances. We
enforce the constraint: “a song by ‘the Beatles’ must be classified as
either rock or pop”.

UC4: A multi-label classification problem of identifying the labels
from a sequence of 4 MNIST images. We enforce the constraint: “the
sum of the predicted labels must be greater than 10”. 20000 instances
are generated by selecting 4 images at random from the MNIST
dataset.

UC5: A preference learning problem to predict the preference
order of different sushi, with constraint: “the prediction must have a
coherent preference order”. The preference order of 6 out of 10 sushi
is used to predict the preference order of the remaining 4 sushi. The
dataset contains 4926 instances. The preference ordering over n items
is encoded as a flattened binary matrix tXiju where Xij denotes that
item i is at position j. Under this encoding, each instance has 36
features and 16 targets.

6.2 Evaluation Methodology

Evaluation: Constraint satisfaction is typically evaluated by the con-
straint accuracy metric used in xu2018semantic and fischer2019dl2,
which corresponds to the percent of instances where the constraint is

not violated by the prediction. Such an evaluation, however, is limited
to a finite sample of the population. Hence, as a second measure, we
also calculate the Adversity Index (AdI) ([11]), which is the fraction
of instances for which a counter-example to the constraint can be
constructed in the neighborhood, defined by an l8 ball of radius δ
around the instance. AdI takes a value between 0 and 1, a higher
value of AdI implies that the model violates the constraint on more
points similar to data instances. AdI is calculated on full data (training
and test) because this provides more instances to evaluate constraint
satisfaction; we want the constraints to be satisfied on all data, not
only test data. For DeepSaDe, both constraint accuracy and AdI are
zero by construction but we still calculate it as a sanity check. We
use the neural network verification software Marabou ([20]) to find
counter-examples. However, we only compute the AdI for UC1-3
because Marabou only handles inequality constraints. We don’t know
any verification tool that can verify the constraints in UC4-5. For pre-
dictive performance, we use MSE for UC1 and accuracy for UC2-3.
For UC4-5, we use coherent accuracy which is the fraction of in-
stances for which the model predicts the entire configuration correctly,
flattened accuracy which is the fraction of individually correct binary
labels, and the Jaccard accuracy which is the average Jaccard index
for each multi-label prediction compared to true labels. Performance
is only evaluated for instances where the true label does not violate the
constraint as there can be data instances in practice where this happens
(e.g. racially biased data to predict crime likelihood), comparison with
such instances makes the evaluation biased.

Baselines: For UC2 and UC3, we use regularization baselines
based on xu2018semantic (SL) and diligenti2017semantic (SBR). For
UC1, we design a custom regularization loss REG (details in appendix
A.2). For UC4, we could not find any approaches that can enforce
such a constraint. Hence, we simply compare with a feedforward
network (FFN). For UC5, we choose SL and FFN as baselines.

Experimental Setup: For solving the MaxSMT problem, we im-
plement the Fu-Malik algorithm ([8]) over the Z3 solver for NRA
(Quantified Nonlinear Real Arithmetic) formulas. We ran experiments
on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz machine with
125 GB RAM. For each use case, we run 5 experiments with 5-fold
cross-validation, and the data is split 70/20/10 into train/test/validation.
Every feature is scaled in [0, 1], and the radius δ “ 0.1 is chosen for
AdI, which is significantly smaller than the mean ℓ8 distance between
two points: this distance for UC1 is 0.75, for UC2 is 0.97, and for
UC3 is 0.89. For regularization, the smallest value of λ, in r0, 1s, that
leads to minimum violations on the validation set is selected via cross-
validation. Refer to Appendix A.2 for details on the architectures and
hyper-parameters.

6.3 Results (Tables 1 & 2)

Constraint Satisfaction: DeepSaDe finds a model that achieves 100%
constraint accuracy for each use case and AdI = 0 for UC1-3. For
UC1, the constraint accuracy for REG is 93.5%, and counterexamples
can be constructed close to 97% of the instances (AdI = 0.97). Similar
behavior is seen for UC3 for both SL and SBR, with SBR proving
to be more effective in enforcing constraints because of lower AdI.
For UC2, SL and SBR both lead to 100% constraint accuracy, but
counterexamples can still be constructed as AdI ą 0. For UC4 and
UC5, FFN fails to satisfy constraints on test set. For UC5, SL can
satisfy the constraint but the predictive performance is much worse
than DeepSaDe. Thus, in general, existing approaches, in contrast to
DeepSaDe, do not satisfy domain constraint satisfaction in practice,
which answers Q1.



UC Approach Constraint AdI(δ “ 0.1) Accuracy/MSE Runtime (sec)

UC1 DeepSaDe 100˘0 0˘0 *38.36˘4.59 102341˘40198

REG 93.50˘2.01 0.97˘0.003 *30.50˘6.49 227˘70

UC2
DeepSaDe 100˘0 0˘0 80.04˘4.29 447˘105

SL 100˘0 0.002˘0.006 80.17˘3.88 45˘30

SBR 100˘0 0.002˘0.004 80.04˘3.95 45˘27

UC3
DeepSaDe 100˘0 0˘0 80.11˘4.99 6580˘1915

SL 99.97˘0.03 0.42˘0.28 82.53˘3.58 101˘45

SBR 99.97˘0.05 0.29˘0.10 76.51˘7.50 196˘68

Table 1: Results: UC1, UC2 & UC3 (*MSE, lower MSE value is better)

UC Approach Constraint Coherent Flattened Jaccard Runtime (sec)

UC4 DeepSaDe 100˘0 6.62˘1.72 78.52˘1.73 62.97˘2.28 227928˘30559

FFN 88.00˘3.26 23.94˘4.25 85.81˘1.18 71.55˘2.40 3215˘2663

UC5
DeepSaDe 100˘0 11.08˘2.61 67.17˘1.48 25.94˘2.89 17586˘5074

FFN 0.04˘0.15 0.01˘0.04 75.69˘0.15 13.04˘1.06 48˘10

SL 100˘0 4.06˘3.33 63.16˘2.62 18.08˘3.33 298˘110

Table 2: Results: UC4 & UC5

Predictive Performance: DeepSaDe treats the domain constraint
as a hard constraint, which limits the solution space to the regions
where the constraint is guaranteed. Thus, the predictive performance
of DeepSaDe models can be worse than existing approaches which do
not guarantee constraint satisfaction. For UC1, the predictive perfor-
mance of DeepSaDe is slightly worse than REG, while the difference
is not statistically significant for UC2 & UC3. The performance of
DeepSaDe is worse for UC4 on all prediction metrics compared to
FFN. For UC5, SL regularization with a high value of λ allows for
satisfying all the constraints on the test set but performs much worse
than DeepSaDe. To study this further, we plot the prediction loss
(cross-entropy) for SL models on the test set for various λ between
0 and 0.9, averaged over 5 folds, in Figure 2. For comparison, the
average loss for DeepSaDe is also plotted. DeepSaDe achieves con-
straint satisfaction in addition to having better performance than SL
with a high λ. High regularization makes the prediction loss insignifi-
cant compared to the regularization loss, leading to worse predictive
performance.

Figure 2: Test loss for UC5
In DeepSaDe, where the solution at every iteration is learned with

MaxSMT, the solver tries to satisfy as many soft constraints as possi-
ble in addition to satisfying the domain constraints. DeepSaDe, thus,
is a more stable learner compared to regularization with high λ. This
answers Q2. Although the constraint satisfaction with DeepSaDe
comes at the cost of predictive performance in some cases, in appli-
cations where constraints are crucial, like in safety-critical domains,
this may be acceptable.

Training Time: DeepSaDe requires between 10 to 500 times more
time than baselines across different use cases. This is because Deep-
SaDe solves a MaxSMT problem at each iteration, which makes

the training slower than the numerical updates in the baselines. This
positively answers the research question Q3. In applications where
constraints are imperative, training time is less relevant, e.g., a net-
work trained over a week and guarantees safety is still more valuable
to the autonomous vehicle compared to one trained for a few hours
but cannot do so. Our work is a starting point of such an approach
that combines the exact solving of universal quantifiers with gradient-
based learning to train neural nets. With further research into solver
technology, it can be made more scalable. Additionally, for future
work, possible modifications to improve the efficiency of DeepSaDe
include using an incomplete MaxSMT approach like stochastic lo-
cal search ([23]) instead of a complete one like Fu-Malik, and using
compact bounds for the latent space ([29]).

7 Conclusion
We proposed DeepSaDe to train feedforward neural networks which
can enforce a variety of constraints and guarantee constraint satis-
faction for all possible predictions, using a satisfiability framework
combined with gradient-based optimization. DeepSaDe is effective in
a variety of ML tasks and provides a flexible representation of con-
straints, though sometimes at some cost of performance. It can enforce
any constraint written in an SMT formula, as long as it is feasible to
solve it with the solver. We rely on the Z3 solver but our framework
is not dependent on it; any solver that can solve MaxSMT problems
with universally quantified constraints can be used. We believe that
evolving solver capabilities will allow DeepSaDe to handle more
complex constraints. Extension of DeepSaDe to other architectures
(e.g. Convolutional Neural Networks) is left for future work.
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A Appendix
A.1 DeepSaDe: Domain Bound Propagation

This appendix provides more details on the calculation of the latent
bounds in the domain-bound propagation approach in section 4.1. The
calculation detailed below is based on the interval arithmetic approach
([27, 10]). Given the lower and upper bounds lpnq and upnq for the
input xpnq of layer hn, the output of the ith neuron of layer hn for an
arbitrary input xpnq can be written as (assuming activation):

x
pn`1q

i “ activationpbpnq

i `

|hn´1|
ÿ

j“1

w
pnq

j,i x
pnq

j q

Assuming that the activation function is monotonically non-
decreasing, which the typically used activations (like ReLu, Sigmoid,
Tanh) are, we can bound x

pn`1q

i by lower and upper bounds lpn`1q

i

and u
pn`1q

i where:

l
pn`1q

i “ activationpmin
xpnq

pb
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w
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j qq

u
pn`1q

i “ activationpmax
xpnq

pb
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j“1

w
pnq

j,i x
pnq

j qq

In each formula, all terms can be maximized or minimized indepen-
dently because the domain is an axis-parallel hyperrectangle. The
bounds can be written as:

l
pn`1q

i “ activationpbpnq

i `

|hn´1|
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pw
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pw
pnq

j,i x
pnq

j qq

Note that for any linear function wx with x P rl, us is maximal when
x “ u for positive w, and when x “ l for negative w. Thus, the
bounds can be calculated with the following expressions:
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To conclude, with this approach, the bounds for the output of a
layer hn can be calculated in terms of the bounds of the input and the
parameters of the layer. These bounds can thus be propagated from
the input space to the latent space of the last layer. An illustration of
this approach is provided in figure 3. It is important to note that the
bounds calculated with this approach as very wide, but are suitable
for our purposes and are cheap to compute. There are approaches to
calculate more compact bounds ([29]) that may improve the efficiency
of the model, this is left for future work.

A.2 Experimental Details

In this appendix, we provide details of the logical formulation of
domain constraints for each use case in SMT, along with information
regarding the network architecture and the hyper-parameters selected
for each use case. We also provide an illustration of the Adversity

Figure 3: Domain Bound Propagation: the bounds for the output of
each layer are constructed in such a way that any input to the network
takes a value in the latent space within the constructed latent bounds.
The input domain (in pink), when propagated through the layers,
lies completely in the constructed latent domains (in green). Thus,
enforcing a constraint on the latent bound of the last layer guarantees
that the constraint is satisfied on any input within input bounds. In
our approach, this construction is essential for achieving constraint
satisfaction guarantees for neural networks.

Index (AdI) in figure 4. In the following, for a compact representation,
we assume ŷ represents the real-valued output of the model. Addition-
ally, to express the component of a variable x, we use subscript with
the name of the component (e.g., xname is the value of the ‘name’
feature of the variable x). For each network, the ReLU activation is
used in the hidden layers.

UC1: UC1 is the expense prediction problem with two domain
constraints. The dataset contains 35317 violations of either of the
constraints in 41417 instances. The ‘household income’ feature is a
part of the domain constraints, it is mapped to the last layer with skip
connections. Formulation of the domain constraint at the last layer of
the DeepSaDe approach is:

K1 : @x P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s,
´

pSUMpŷq ď xhousehold´incomeq^

pŷgoing´out ď 0.05 ˚ xhousehold´incomeq

¯

For the baseline REG, we use two regularization parameters λ and
γ for each constraint with the weight on the predictive loss being
p1´ λ´ γq:

L “ p1´λ´γq˚MSE`λ˚
1

}D}
˚

ÿ

xPD

maxp0,
ÿ

fwpxq´xincomeq`

γ ˚
1

}D}
˚

ÿ

xPD

maxp0, fwpxqgoing_out ´ 0.05 ˚ xincomeq

Both λ and γ are tuned in the range of r0, 0.49s using the 5-fold
nested cross validation. For each model, a network with three hidden
layers with sizes 50, 50, & 14 is considered. The learning rate for the
baseline and DeepSaDe is selected to be 0.001 with a batch size of 5.
For REG, the mode is trained for 10 epochs while for DeepSaDe the
model is trained for 5 epochs. The maximal step size for DeepSaDe is



Figure 4: Illustration of AdI: 3 instances are mapped to real value
predictions using a neural network. The green region is the output re-
gion that satisfies the constraint, the red region does not. It is possible,
only for the leftmost data point, to construct a new point in the ℓ8

ball such that its prediction violates the constraint, even though the
prediction of the original instance does not. Hence, AdI = 1{3.

selected to be 0.1 and the error threshold of r0.1s is used for defining
the soft constraints.

UC2: UC2 is the loan prediction task that is modeled by a binary
classification task. The dataset contains 40 violations of the constraint
in 492 instances. Features ‘income’ and ‘credit history’ are mapped
to the last layer with identity mapping. Formulation of the domain
constraint at the last layer of the DeepSaDe approach is:

K1 : @x P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s,

´

pxincome ă 5000q ^ pxcredit_history “ 0q
¯

ùñ

´

ŷno´loan ą ŷloan
¯

For each model, a network with three hidden layers with sizes 50,
30, & 10 is considered. For SL and SBR, the learning rate of 0.1,
and batch size of 5 are selected and the models are trained for 400
epochs. For DeepSaDe, the learning rate of 0.1, maximal step size of
0.1, batch size of 5, and the margins (τ ) of r0, 1, 2s are selected, and
the models are trained for 50 epochs.

UC3: UC3 is the music genre prediction task which is modeled by
a multiclass classification task. The dataset contains 41 violations in
793 instances. Feature ‘artist’ is mapped to the last layer. Formulation
of the domain constraint at the last layer of the DeepSaDe approach
is:

K1 : @x P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s, pxartist “ the beatlesq ùñ

´

pŷclassical ă 0q ^ pŷelectronic ă 0q^

pŷmetal ă 0q ^ pŷpop ą 0_ ŷrock ą 0q
¯

For each model, a network with three hidden layers with sizes 50,
30, & 10 is considered. For SL and SBR, the learning rate of 0.1,
and batch size of 5 are selected and the models are trained for 300
epochs. For DeepSaDe, the learning rate of 0.1, maximal step size of
0.1, batch size of 5, and the margins (τ ) of r0, 1, 2s are selected, and
the models are trained for 50 epochs.

UC4: UC4 is the multi-label prediction task of classifying a se-
quence of four MNIST images to their respective classes. The dataset

contains no violations of the domain constraint. The domain constraint
in this problem does not depend on any of the input features. For-
mulation of the domain constraint at the last layer of the DeepSaDe
approach is:

K1 : @x P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s,
´

SUM([IF(ŷi ą 0, i, 0) for i in range(10)]) ą 10
¯

For each model, a network with three hidden layers with sizes 50,
50, & 10 is considered. For FFN, the learning rate of 0.1, and batch
size of 10 are selected and the models are trained for 40 epochs. For
DeepSaDe, the learning rate of 0.1, maximal step size of 0.1, batch
size of 10, and the margins (τ ) of r0, 1, 2s are selected, and the models
are trained for 60 epochs.

UC5: UC5 is the preference learning task with the coherence con-
dition as the domain constraint. The dataset contains no violations of
the domain constraint. The domain constraint in this problem does not
depend on any of the input features. The constraints are formulated in
DeepSaDe using the following encoding:

K1 : @x P

|hk´1|
ą

i“1

rl
pkq

i , u
pkq

i s,

´

PbEqprŷ0 ą 0, ŷ1 ą 0, ŷ2 ą 0, ŷ3 ą 0s, 1q^

PbEqprŷ4 ą 0, ŷ5 ą 0, ŷ6 ą 0, ŷ7 ą 0s, 1q^

PbEqprŷ8 ą 0, ŷ9 ą 0, ŷ10 ą 0, ŷ11 ą 0s, 1q^

PbEqprŷ12 ą 0, ŷ13 ą 0, ŷ14 ą 0, ŷ15 ą 0s, 1q^

PbEqprŷ0 ą 0, ŷ4 ą 0, ŷ8 ą 0, ŷ12 ą 0s, 1q^

PbEqprŷ1 ą 0, ŷ5 ą 0, ŷ9 ą 0, ŷ13 ą 0s, 1q^

PbEqprŷ2 ą 0, ŷ6 ą 0, ŷ10 ą 0, ŷ14 ą 0s, 1q^

PbEqprŷ3 ą 0, ŷ7 ą 0, ŷ11 ą 0, ŷ15 ą 0s, 1q
¯

Where ‘PbEq’ encodes the exactly-k constraint, PbEqpra, b, cs, kq
enforces that exactly k of the boolean constraints a, b, and c must be
true, where k P t1, 2, 3u in this example. For each model, a network
with three hidden layers with sizes 25, 25, & 10 is considered. For SL
and FFN, the learning rate of 0.1, and batch size of 10 are selected
and the models are trained for 40 epochs. For DeepSaDe, the learning
rate of 0.1, maximal step size of 0.1, batch size of 10, and the margins
(τ ) of r0, 1, 2s are selected, and the models are trained for 40 epochs.

A.3 Results

In addition to the experiments presented in the main text, we also
perform some supplementary experiments where we visualize the
latent space for the networks learned with DeepSaDe. These experi-
ments demonstrate that DeepSaDe, similar to existing gradient-based
approaches, is also able to identify patterns in the latent space, which
makes it easier to satisfy the constraint at the last layer. This experi-
ment also adds validity to DeepSaDe as a learning approach.

Visualizing the Latent Space: First, we consider the multiclass
classification problem of UC3 where the constraint is only enforced
for a part of the input space that satisfies the input property (i.e., when
the artist = ‘the Beatles’). In Figure 5, we plot the t-SNE (t-distributed
Stochastic Neighbour Embedding) ([16]) transformation of the latent
space of the last layer. t-SNE captures the structure in the sense that
neighboring points in the latent space should be closer in the t-SNE
representation. In the left figure, data points that satisfy the input



(a)

(b)

Figure 5: For UC3, a visualization of the latent space of the input to the last layer for the network trained by (a) DeepSaDe and (b) an
unconstrained model, on the test data. A 2-dimensional reduction of the latent space using t-SNE is plotted on both plots. In the left plot, the
points in orange are the ones that satisfy the input property (i.e., artist = ‘the Beatles’). In the right plot, the orange points are the ones for which
the network predicts the genre as either pop or rock.

(a)

(b)

Figure 6: t-SNE representation of the latent space for (a.) FFN model, and (b.) DeepSaDe model for UC4. From left to right, the input space of
the first to the last layer is visualized in a two-dimensional space for a test dataset. The latent vectors of the DeepSaDe model exhibit similar
behavior as the FFN model, i.e., as the model gets deeper, similar instances can be clustered together by the t-SNE representation. This implies
that similar to FFN, DeepSaDe is also able to identify patterns in the data while enforcing hard domain constraints which are always satisfied.

property are highlighted (in orange), while in the right figure, data
points that are predicted as either ‘pop’ or ‘rock’ by the network are
highlighted (in orange). It is shown that the instances that satisfy the
input property are clustered together better for DeepSaDe than for the
unconstrained model, which implies that enforcing the constraint at
the last layer with DeepSaDe enables us to learn the latent space such
that enforcing constraints at the last layer becomes easier. Furthermore,

the network trained through DeepSaDe satisfies the constraint for each
of these instances by predicting the genre to be either pop’ or ‘rock,’
as shown in the right figure. However, for an unconstrained network,
the model still violates some of the constraints since the constraints
are not enforced. We selected UC3 to analyze the distribution of the
latent space in the context of the input property, which is difficult to
do for use cases UC1, UC4, and UC5, where the constraint is being



enforced on all possible predictions.
We perform another analysis for use case UC4 which classifies a

collection of MNIST images into respective labels in a multi-label
classification task. Here, the constraint is being enforced for all pos-
sible outputs of the network, hence it is difficult to see the impact of
constraint satisfaction in the t-SNE representation. However, in this
experiment, we compare how the t-SNE representation of the Deep-
SaDe model compares with the t-SNE representation for the baseline
model (which in this case is a feed-forward neural network without
any constraint enforcement). The goal here is to demonstrate the va-
lidity of DeepSaDe. Figure 6 shows that DeepSaDe exhibits similar
behavior in the low dimensional representation of the latent space
for each layer when compared with the similar representation of the
FFN model. DeepSaDe can identify similar points in the latent space
(because t-SNE can cluster data points as the model becomes deeper),
which means that the network can learn patterns from the data, similar
to the FFN while enforcing hard constraints on the predictions which
are always satisfied.
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