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Abstract: There are situations in which an agent should receive rewards only after having accomplished a series of
previous tasks, that is, rewards are non-Markovian. One natural and quite general way to represent history-
dependent rewards is via a Mealy machine. In our formal setting, we consider a Markov decision process
(MDP) that models the dynamics of the environment in which the agent evolves and a Mealy machine syn-
chronized with this MDP to formalize the non-Markovian reward function. While the MDP is known by the
agent, the reward function is unknown to the agent and must be learned. Our approach to overcome this chal-
lenge is to use Angluin’s L∗ active learning algorithm to learn a Mealy machine representing the underlying
non-Markovian reward machine (MRM). Formal methods are used to determine the optimal strategy for an-
swering so-called membership queries posed by L∗. Moreover, we prove that the expected reward achieved
will eventually be at least as much as a given, reasonable value provided by a domain expert. We evaluate our
framework on two problems. The results show that using L∗ to learn an MRM in a non-Markovian reward
decision process is effective.

1 INTRODUCTION

Traditionally, a Markov Decision Process (MDP)
models the probability of going to a state s′ from the
current state s while taking a given action a together
with an immediate reward that is received while per-
forming a from s. This immediate reward is defined
regardless of the history of states traversed in the past.
Such immediate rewards thus have the Markovian
property. But many situations require the reward to
depend on the history of states visited so far. A reward
may depend on the particular sequence of (sub)tasks
that has been completed. For instance, when a nu-
clear power plant is shut down in an emergency, there
is a specific sequence of operations to follow to avoid
a disaster; or in legal matters, there are procedures
to follow which require documents to be submitted
in a particular order. So, many tasks agents could
face need us to reason about rewards that depend on
some history, not only the immediate situation (non-
Markovian).

Learning and maintaining non-Markovian reward
functions is useful for several reasons: (i) Many tasks
are described intuitively as a sequence of sub-tasks or
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mile-stones, each with their own reward (cf. the re-
lated work below) (ii) Possibly, not all relevant fea-
tures are available in state descriptions, or states are
partially observable, making it necessary to visit sev-
eral states before (more) accurate rewards can be dis-
pensed (Amato et al., 2010; Icarte et al., 2019). (iii)
Automata (reward machines) are useful for model-
ing desirable and undesirable situations facilitating
tracking and predicting beneficial or detrimental sit-
uations (Alshiekh et al., 2018; Křetı́nský et al., 2018;
Giacomo et al., 2019). Actually, in practice, it can be
argued that non-Markovian tasks are more the norm
than Markovian ones.

In this work, we assume that the states and the
transition function are known, but the reward func-
tion is unknown. It is also assumed that the reward be-
havior of the environment is possibly non-Markovian.
The aim is to learn a model of the non-Markovian re-
ward function and use it whenever possible, even if it
is not yet known to be a complete model. We describe
an active learning algorithm to automatically learn
non-Markovian reward models by executing ‘exper-
iments’ on the system. In our case, a non-Markovian
reward model is represented as a Mealy machine; a
deterministic finite automaton (DFA) that produces
output sequences that are rewards, from input se-



Figure 1: Flow diagram of the proposed framework for learning and exploiting Mealy reward machines (MRMs).

quences that are 〈state, action〉 observations. We refer
to such finite state reward models as Mealy Reward
Machines (MRM). Our framework (Fig. 1) is consid-
ered to be for online systems, alternating between a
learning phase and an exploitation phase. The learn-
ing phase is based on Angluin’s L∗ active learning al-
gorithm (Angluin, 1987) to learn finite automata. It
is an active learning algorithm because it poses a se-
ries of queries to a teacher who must provide answers
to an agent performing experiments on/in the system
being learnt. In our case, the learner is an agent in an
MDP and the teacher is the environment. The queries
consist of sequences of observations and the answers
are the corresponding sequences of rewards that the
agent experiences. In this setting, answering mem-
bership queries is already a challenge. An observa-
tion is a function of an action and the successor state.
Encountering a particular observation sequence when
actions are stochastic and observations have the func-
tional dependencies just mentioned is non-trivial.

When L∗ has enough input/output data, it can
build a corresponding MRM as an hypothesis of the
true underlying MRM. In our framework, whenever
an hypothesis is inferred, the agent enters the ex-
ploitation phase. The agent then acts to maximize re-
wards until it encounters a sequence of observations
and rewards which contradicts the current hypothesis.
The agent then goes back to learning with L∗.

Due to the stochasticity of actions in MDPs, a
challenge is for the agent to experience exactly the
observation sequence posed by L∗ as a query, and to
do so efficiently. We rely on known formal methods to
compute the sequence of actions the agent should exe-
cute to encounter the observation sequence with high-
est probability or least expected number of actions.
Another important aspect of the framework is that,

given an (hypothesized) MRM, a synchronized prod-
uct of the MRM and the MDP is induced so that an im-
mediate reward function is available from the induced
product MDP. This means that existing (Markovian)
MDP planning or reinforcement learning techniques
can be employed in the exploitation phase. We use
model-based optimization methods as developed by
(Baier and Katoen, 2008).

Furthermore, in our framework, a special reset ac-
tion is introduced at the time the synchronized prod-
uct is formed. This action is available at every state of
the product MDP such that it takes the system to its
initial state. In this way, the product MDP is strongly
connected and we can then prove some useful prop-
erties of our framework. The engineer needs not be
concerned with the reset action when modeling the
system, that is, the MDP of the system does not have
to mention this action. However, the engineer should
keep in mind that the framework is best used for sys-
tems which can actually be reset at any time. Another
useful feature of our framework is that it allows a do-
main expert to provide a value that the system should
be able to achieve in the long-run if it follows the op-
timal strategy. This ‘expert value’ needs not be the
optimal expected value, but some smaller value that
the system owner wants a guarantee for.

Our contribution is to show how a non-Markovian
reward function for a MDP can be actively learnt
and exploited to play optimally according to this non-
Markovian reward function in the MDP. We provide
a framework for completely and correctly learning
the underlying reward function with guarantees under
mild assumptions. To the best of our knowledge, this
is the first work which employs traditional automata
inference for learning a non-Markovian reward model
in an MDP setting.



Related Work There has been a surge of interest in
non-Markovian reward functions recently, with most
papers on the topic being publications since 2017.
But unlike our paper, most of those papers are not
concerned with learning non-Markovian reward func-
tions.

An early publication that deserves to be men-
tioned is (Bacchus et al., 1996). In this paper, the
authors propose to encode non-Markovian rewards by
assigning values using temporal logic formulae. The
reward for being in a state is then the value associated
with a formula that is true in that state. They were
the first to abbreviate the class of MDP with non-
Markovian reward as decision processes with non-
Markovian reward or NMRDP for short. A decade
later, (Thiébaux et al., 2006) presented the Non-
Markovian Reward Decision Process Planner: a soft-
ware platform for the development and experimenta-
tion of methods for decision-theoretic planning with
non-Markovian rewards. In both the cases above, the
non-Markovian reward functions is given and does
not need to be learned.

A closely related and possibly overlapping re-
search area is the use of temporal logic (especially
linear temporal logic (LTL)), for specifying tasks in
Reinforcement Learning (RL) (Alshiekh et al., 2018;
Icarte et al., 2018a; Icarte et al., 2018b; Camacho
et al., 2019; Giacomo et al., 2019; Hasanbeig et al.,
2019a).

Building on recent progress in temporal logics
over finite traces (LTL f ), (Brafman et al., 2018) adopt
linear dynamic logic on finite traces (LDL f ; an ex-
tension of LTL f ) for specifying non-Markovian re-
wards, and provide an automaton construction al-
gorithm for building a Markovian model. The ap-
proach is claimed to offer strong minimality and com-
positionality guarantees. In those works, the non-
Markovian reward function is given and does not have
to be learned as in our setting.

In another paper (Camacho et al., 2018), the au-
thors are concerned with both the specification and
effective exploitation of non-Markovian rewards in
the context of MDPs. They specify non-Markovian
reward-worthy behavior in LTL. These behaviors are
then translated to corresponding deterministic finite
state automata whose accepting conditions signify
satisfaction of the reward-worthy behavior. These au-
tomata accepting conditions form the basis of Marko-
vian rewards by taking the product of the MDP and
the automaton (as we do).

None of the research mentioned above is con-
cerned with learning non-Markovian reward func-
tions. However, in the work of (Icarte et al., 2019), an
agent incrementally learns a reward machine (RM) in

a partially observable MDP (POMDP). They use a set
of traces as data to solve an optimization problem. “If
at some point [the RM] is found to make incorrect pre-
dictions, additional traces are added to the training set
and a new RM is learned.” Their approach is also ac-
tive learning: If on any step, there is evidence that the
current RM might not be the best one, their approach
will attempt to find a new one. One strength of their
method is that the the reward machine is constructed
over a set of propositions, where propositions can
be combined to represent transition/rewarding condi-
tions in the machine. Currently, our approach can take
only single observations as transition/rewarding con-
ditions. However, they do not consider the possibility
to compute optimal strategies using model-checking
techniques.

Moreover, our approach is different to that of
(Icarte et al., 2019) in that our agents are guided by the
L∗ algorithm to answer exactly the queries required to
find the underlying reward machine. The approach
of (Icarte et al., 2019) does not have this guidance
and interaction with the learning algorithm; traces for
learning are collected by random exploration in their
approach.

Next, we cover the necessary formal concepts and
notations. In Section 3, we define our Mealy Reward
Machine (MRM). Section 4 explains how an agent
can infer/learn an underlying MRM and present one
method for exploiting a learnt MRM. We discuss the
guarantees offered by the framework in Section 5.
Section 6 reports on experiments involving learning
and exploiting MRMs; we consider two scenarios.
The last section concludes this paper and points to fu-
ture research directions.

2 FORMAL PRELIMINARIES

We review Markov Decision Processes (MDPs) and
Angluin-style learning of Mealy machines.

An (immediate-reward) MDP is a tuple
〈S,A,T,R,s0〉, where S is a finite set of states;
A is a finite set of actions; T : S×A× S 7→ [0,1] is
the state transition function such that T (s,a,s′) is the
probability that action a causes a system transition
from state s to s′; R : A × S 7→ R is the reward
function such that R(a,s) is the immediate reward for
performing action a in state s; and s0 the initial state
the system is in. A non-rewarding MDP (nrMDP) is
a tuple 〈S,A,T,s0〉 without a reward function.

The following description is from (Vaandrager,
2017). (Angluin, 1987) showed that finite automata
can be learned using the so-called membership and
equivalence queries. Her approach views the learn-
ing process as a game between a minimally adequate



teacher (MAT) and a learner who wants to discover
the automaton. In this framework, the learner has to
infer the input/output behavior of an unknown Mealy
machine by asking queries to a teacher. The MAT
knows the Mealy machine M . Initially, the learner
only knows the inputs I and outputs O of M . The
task of the learner is to learn M through two types
of queries: (1) With a membership query (MQ), the
learner asks what the output is in response to an input
sequence σ∈ I ∗. The teacher answers with output se-
quence M (σ). (2) With an equivalence query (EQ),
the learner asks whether a hypothesized Mealy ma-
chine H with inputs I and outputs O is correct, that is,
whether H and M are equivalent (∀σ ∈ I ∗,M (σ) =
H (σ)). The teacher answers yes if this is the case.
Otherwise she answers no and supplies a counter-
example σ′ ∈ I ∗ that distinguishes H and M (i.e.,
such that M (σ′) 6= H (σ′)).

The L∗ algorithm incrementally constructs an ob-
servation table with entries being elements from O.
Two crucial properties of the observation table allow
for the construction of a Mealy machine (Vaandrager,
2017): closedness and consistency. We call a closed
and consistent observation table complete.

(Angluin, 1987) proved that her L∗ algorithm is
able to learn a finite state machine (incl. a Mealy ma-
chine) by asking a polynomial number of membership
and equivalence queries (polynomial in the size of the
corresponding minimal Mealy machine equivalent to
M ). Let |I | be the size of the input alphabet (obser-
vations), n be the total number of states in the target
Mealy machine, and m be the maximum length of the
counter-example provided by the MAT for learning
the machine. Then the correct machine can be pro-
duced by asking maximum O(|I |2 + |I |mn2) queries
(using, e.g., the LM

+ algorithm) (Shahbaz and Groz,
2009).

In an ideal (theoretical) setting, the agent (learner)
would ask a teacher whether H is correct (equiva-
lence query), but in practice, this is typically not pos-
sible (Vaandrager, 2017). “Equivalence query can be
approximated using a conformance testing (CT) tool
(Lee and Yannakakis, 1996) via a finite number of
test queries (TQs). A test query asks for the response
of the [system under learning] to an input sequence,
similar to a membership query. If one of the test
queries exhibits a counter-example then the answer to
the equivalence query is no, otherwise the answer is
yes” (Vaandrager, 2017). A finite and complete con-
formance test suite does exist if we assume a bound
on the number of states of a Mealy machine (Lee and
Yannakakis, 1996).

Our present framework, however, does not rely on
conformance testing by performing a particular suite

(a) The treasure-map world. Blank cells
contain observation null by default.
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(b) A Mealy reward machine. Self-loops are not shown.

Figure 2: The treasure-map scenario.

of TQs. Rather, if it is found that the current hypothe-
sis would under-perform compared to what a domain
expert expects, the framework executes a weaker kind
of conformance testing: the agent performs actions
uniformly at random until a counter-example is found.

3 MODELING NON-MARKOVIAN
REWARDS

3.1 Running Example

Consider, as a running example (Fig. 2), an agent who
might stumble upon a person with a map (m) for a
hidden treasure (t) and some instruction on how to re-
trieve the treasure. The instructions imply that the
agent purchase some specialized equipment (e) be-
fore going to the cave marked on the treasure map.
Alternatively, the agent may hire a guide (g) who al-
ready has the necessary equipment. If the agent is
lucky enough to find some treasure, the agent must
sell it at the local jewelry trader (j). The agent can
then restock its equipment or re-hire a guide, get some
more treasure, sell it and so on. Unfortunately, the in-
structions are written in a coded language which the
agent cannot read. However, the agent recognizes that
the map is about a hidden treasure, and thus spurs
the agent on to start treasure hunting to experience
rewards and learn the missing information.

Besides the four movement actions, the agent can
also buy, sell and collect. In the next subsection, we
define a labeling function which takes an action and a
state, and maps to an observation. For this example,



the labeling function has the following effect. If the
agent is in the state containing m, e or g and the does
the buy action, then the agent observes m, e respec-
tively g. If the agent is in the state containing t, and
does the collect action, then the agent observes t. If
the agent is in the state containing j, and does the sell
action, then the agent observes j. In all other cases,
the agent observes null.

After receiving the treasure map, the agent might
not find a guide or equipment. In general, an agent
might not finish a task or finish only one version of a
task or subtask. In this world, the agent can reset its
situation at any time; it can receive a map again and
explore various trajectories in order to learn the entire
task with all its variations.

The reward behavior in this scenario is naturally
modeled as an automaton where the agent receives
a particular reward given a particular sequence of
observations. There is presumably higher value in
purchasing equipment for treasure hunting only af-
ter coming across a treasure map and thus deciding
to look for a treasure. There is more value in being
at the treasure with the right equipment than with no
equipment, etc.

We shall interpret features of interest as obser-
vations: (obtaining) a map, (purchasing) equipment,
(being at) a treasure, (being at) a jewelry trader, for
example. Hence, for a particular sequence of in-
put observations, the Mealy machine outputs a cor-
responding sequence of rewards. If the agent tracks
its observation history, and if the agent has a correct
automaton model, then it knows which reward to ex-
pect (the last symbol in the output) for its observation
history as input. Figure 2a depicts the scenario in two
dimensions. The underlying Mealy machine could be
represented graphically as in Figure 2b. It takes obser-
vations as inputs and supplies the relevant outputs as
rewards. For instance, if the agent sees m, (map), then
j, then t, then the agent will receive rewards 10, then 0
and then 0. And if it sees the sequence m ·g · t · j, then
it will receive the reward sequence 10 ·70 ·95 ·180.

We define intermediate states as states that do not
signify a significant progress towards completion of
a task. In Figure 2a, all blank cells represent in-
termediate states. We assume that there is a default
reward/cost an agent gets for entering intermediate
states. This default reward/cost is fixed and denoted
c in general discussions. Similarly, the special null
observation (null) is observed in intermediate states.
An agent might or might not be designed to recognize
intermediate states. If the agent could not distinguish
intermediate states from ‘significant’ states, then null
would be treated exactly like all other observations
and it would have to learn transitions for null obser-

vations (or worse, for all observations associated with
intermediate states). If the agent can distinguish inter-
mediate states from ‘significant’ states (as assumed in
this work), then we can design methods to take advan-
tage of this background knowledge.

3.2 Mealy Reward Machines

We introduce the Mealy reward machine to model
non-Markovian rewards. These machines take a set Z
of observations representing high-level features that
the agent can detect (equivalent to the set of input
symbols for L∗). A labeling function λ : A× S 7→
Z]{null} maps action-state pairs onto observations;
S is the set of nrMDP states and Z is a set of observa-
tions. The meaning of λ(a,s) = z is that z is observed
in state s reached via action a. The null observation
always causes the trivial transition in the machine (i.e.
self-loop) and produced a default reward denoted c.
For Mealy reward machines, the output symbols for
L∗ are equated with rewards in R.

Definition 3.1 (Mealy Reward Machine). Given a set
of states S, a set of actions A and a labeling func-
tion λ, a Mealy Reward Machine (MRM) is a tuple
〈U,u0,Z,δu,δr,c〉, where

• U is a finite set of MRM nodes,
• u0 ∈U is the start node,
• Z]{null} is a set of observations,
• δu :U×Z 7→U is the transition function, such that

δu(ui,λ(a,s)) = u j for a ∈ A and s ∈ S, specifi-
cally, δu(ui,null) = ui,

• δr : U×Z 7→R is the reward-output function, such
that δr(ui,λ(a,s)) = r′ for r′ ∈R, a∈ A and s∈ S,
specifically, δr(ui,null) = c.

We may write δ
R
u and δ

R
r to emphasize that the func-

tions are associated with MRM R .

A Markov Decision Process with a Mealy reward
machine is thus a non-Markovian reward decision
process (NMRDP). In the diagrams of MRMs, an
edge from node ui to node u j labeled z | r denotes that
δu(ui,z) = u j and δr(ui,z) = r.

In the following definitions, let si ∈ S, ai ∈ A,
zi ∈ Z, and ri ∈ R. • An interaction trace of
length k in an MDP represents an agent’s (recent)
interactions with the environment. It has the form
s0a0r1s1a1r2 · · ·sk−1ak−1rk and is denoted σinter. That
is, if an agent performs an action at time t in a state
at time t, then it reaches the next state at time t + 1
where/when it receives a reward. • An observation
trace is extracted from an interaction trace (employ-
ing a labeling function) and is taken as input to an
MRM. It has the form z1z2 · · ·zk and is denoted σz. •



A reward trace is either extracted from an interaction
trace or is given as output from an MRM. It has the
form r1r2 · · ·rk and is denoted σr. • A history has the
form s0a0s1a1 · · ·sk and is denoted σh.

Given a history σh, we extend δu to take histories
by defining δ∗u(ui,σh) inductively as

δu(ui,λ(a0,s1)) ·δ∗u(δu(ui,λ(a0,s1)),a1s2 · · ·sk).

Finally, we extend δr to take histories by defining
δ∗r (ui,σh) inductively as

δr(ui,λ(a0,s1)) ·δ∗r (δu(ui,λ(a0,s1)),a1s2 · · ·sk).

δ∗r explains how an MRM assigns rewards to a history
in an MDP.

3.3 Expected Value of a Strategy under
an MRM

A (deterministic) strategy to play in a nrMDP M =
〈S,A,T,s0〉 is a function π : S∗ 7→ A that associates to
all sequences of states σ ∈ S∗ of M the action π(σ)
to play. In this version of the framework, the agent
tries to maximize mean payoff, defined as M P (σr) =
1
k ∑

k
i=1 ri, where ri is the reward received at step i.

Let M P (R ) be the mean payoff of an infinite reward
trace generated by reward model R . Then the ex-
pected mean payoff under strategy π played in MDP
M from state s is denoted as EM,π

s (M P (R )).
Being able to produce a traditional, immediate re-

ward MDP from a non-Markovian rewards decision
process is clearly beneficial: One can then apply all
the methods developed for MDPs to the underlying
NMRDP, whether to find optimal or approximate so-
lutions. The following definition is the standard way
to produce an MDP from a non-reward MDP (nr-
MDP) and a deterministic finite automaton.

Definition 3.2 (Synchronized Product). Given an nr-
MDP M = 〈S,A,T,s0〉, a labeling function λ : A×S 7→
Z ] {null} and an MRM R = 〈U,u0,Z,δu,δr〉, the
synchronized product of M and R under λ is de-
fined as an (immediate reward) MDP P = M⊗λ R =
〈S⊗,A⊗,T⊗,R⊗,s⊗0 〉, where

• S⊗ = S×U,
• A⊗ = A,
• T⊗((s,u),a,(s′,u′)) ={

T (s,a,s′) if u′ = δu(u,λ(a,s′))
0 otherwise.

• R⊗(a,(s,u)) = δr(u,λ(a,s)),
• s⊗0 = (s0,u0)

Due to MRMs having deterministic transitions (δu
and δ∗u are functions), we have that the histories in M
and P are in bijection. This is stated formally in the

following proposition. Let H(M) and H(P) denote all
histories that can be generated from M, resp. P.

Proposition 3.1. Let B : H(M) 7→H(P) be defined for
σh = s0a0s1a1 · · ·sk as

B(σh) = (s0,u0)

a0(s1,δu(u0,λ(a0,s1))

a1(s2,δu(δu(u0,λ(a0,s1)),λ(a1,s2)))

· · ·
ak−1(sk, last(δ∗u(u0,σh))),

As a consequence, given a strategy π for M, we
can define a strategy π⊗ for P as follows. For all σh ∈
H(M), π⊗(B(σh)) = π(σh).

Corollary 3.1. The strategies in M and P are in bi-
jection.

The following proposition states that the expected
value of an nrMDP with an MRM is equal to the ex-
pected value of their product under the same strategy.

Proposition 3.2. Given an nrMDP M = 〈S,A,T,s0〉,
a labeling function λ : A× S 7→ Z ]{null}, an MRM
R = 〈U,u0,Z,δu,δr〉, P = M⊗λ R , for all strategies
π for M and π⊗ in bijection, we have that

EM,π
s0

(M P (R )) = EP,π⊗

(s0,u0)
(M P (R⊗)).

3.4 Adding a Reset Action

We make the important assumption that the environ-
ment and the agent’s state can be reset. Resetting also
sets the underlying and hypothesized MRMs to their
start nodes. Having a reset action available means
that the underlying domain need not be strongly con-
nected, that is, there needs not exists a path between
all pairs of states. Having the option to reset at any
time allows one to learn in terms of episodes: ei-
ther an episode ends naturally (when the maximum
episode length is reached or when the task is achieved
to satisfaction) or the episode is cut short by reset-
ting the system due to lack of progress. Of course,
the agent retains the hypothesized MRM learnt so far.
Resetting a system is not always feasible. We are,
however, interested in domains where an agent can be
placed in a position to continue learning or repeat its
task.

The results discussed in the next section rely on
the implicit presence of a special reset action x.
Instead of modifying the learning procedure, this
amounts to adding x when defining sybchronized
products ( ⊗x

λ
). Formally, this is done as follows.

Let s0 and u0 be the unique starting state of MDP
M and the unique starting node of MRM R , respec-
tively. Then M⊗x

λ
R is defined as before, and with



x available at every product state (s,u) such that
T ((s,u),x,(s0,u0)) = 1. By adding x in this way,
the products become strongly connected.

Definition 3.3 (Synchronized Product with Homing).
Given an nrMDP M = 〈S,A,T,s0〉, a labeling func-
tion λ : A× S 7→ Z ] {null}, a reset cost cx and
an MRM R = 〈U,u0,Z,δu,δr〉, we define the hom-
ing/‘resetable’ synchronized product of M and R un-
der λ as an (immediate reward) MDP P=M⊗x

λ
R =

〈S⊗x
,A⊗

x
,T⊗

x
,R⊗

x
,s⊗

x
0 〉, where

• S⊗
x

= S×U

• A⊗
x

= A]{x}
• T⊗

x
((s,u),a,(s′,u′)) = T (s,a,s′) if a 6=x ∧u′ = δu(u,λ(a,s′))

0 if a 6=x ∧u′ 6= δu(u,λ(a,s′))
1 if a =x ∧(s′,u′) = (s0,u0)

• R⊗
x
(a,(s,u)) =

{
δr(u,λ(a,s)) if a 6=x

cx otherwise

• s⊗
x

0 = (s0,u0)

Note that adding the reset action does not change
the result of Proposition 3.2.

The following proposition states that the expected
value of an nrMDP with an MRM is equal to the ex-
pected value of their product under the same strategy.

Corollary 3.2. Given an nrMDP M = 〈S,A,T,s0〉, a
labeling function λ : A× S 7→ Z ] {null}, an MRM
R = 〈U,u0,Z,δu,δr〉, P = M⊗x

λ
R , for all strategies

π for M and π⊗
x

in bijection, we have that

EM,π
s0

(M P (R )) = EP,π⊗
x

(s0,u0)
(M P (R⊗

x
)).

A strategy π : S∗ 7→ A is memoryless if ∀σ1,σ2 ∈
S∗ such that last(σ1) = last(σ2), then π(σ1) = π(σ2),
that is, if the action played by π for sequence σ de-
pends only on the last state in σ. Because memoryless
strategies are sufficient to play optimally in order to

maximize EP,π⊗
x

(s0,u0)
(M P (R⊗

x
)) in immediate reward

MDPs, and together with Corollary 3.2, we conclude
that we can play optimally in M under R in a finite
memory strategy π∗ (finite in the memory required
for R ; but memoryless if viewed as P = M⊗x

λ
R ).

Strategy π∗ can be computed with, for instance, the
STORM probabilistic model checking software pack-
age.1 In this work, we use STORM to compute π∗ for
M⊗x

λ
H (product of the nrMDP and the hypothesis

MRM).

1STORM can be found at http://www.stormchecker.org

4 THE FRAMEWORK

4.1 Flow of Operation

A high-level description of the process follows (recall
Fig. 1).

1. Play a finite number of episodes to answer mem-
bership queries by extracting reward traces from
the appropriate interaction traces until the obser-
vation table (OT) is complete;

2. As soon as OT becomes complete, construct new
hypothesized MRM H from OT and compute
the optimal strategy π∗H for M⊗x

λ
H with value

V (π∗H ) employing STORM;

3. If V (π∗H ) is less than the value provided by a do-
main expert, then we know that H must be wrong,
in which case, we seek an interaction trace which
is a counter example to H by playing actions uni-
formly at random (strategy πu);

4. Else, if V (π∗H ) is greater than or equals the value
provided by the domain expert, then repeatedly
execute actions using π∗H ;

5. Whenever a counter-example to H is discovered
(experienced), stop exploitation and go to step 1
(the learning phase).

4.2 Answering Membership Queries
Efficiently

Execution of L∗ requires answers to membership
queries: given a sequence of observations σz, we need
to discover what the associated reward σr = H (σz)
is. Because the transitions in the MDP are stochas-
tic, there is in general no sequence of actions ā that
is guaranteed to force the occurrence of σz. Forc-
ing the sequence σz is a planning problem. Proce-
dure getExperience(σz,s0) implements this in the al-
gorithm formalizing the framework. Here we distin-
guish two natural variants of this planning problem.

The first variant, called MAX asks to synthesize
the strategy πMAX that produces (from the initial state
of the MDP) the sequence σz with the highest proba-
bility α. Let πMAX be the optimal strategy for MAX.
Then we can play πMAX repeatedly, and reset the sys-
tem as soon as the prefix of observations is not com-
patible with σz. Each such try will succeed with prob-
ability α, and so by repeating trials, we are guaranteed
to observe σz with probability 1− (1−α)n after n tri-
als, and so with probability one in the long run. To
synthesize the strategy πMAX , we construct a MDP M′

from M and σz in which states are pairs (s, i) where s



is a state of M and i is an index that tracks the prefix of
the sequence σz that has been observed so far. MDP
M′ is reset as soon as the observed prefix is not com-
patible with σz. The goal is to reach any state (s,k)
where k is the length of the sequence of observations
σz. The model-checking tool STORM can then be
used to synthesized, in polynomial time, the strategy
that maximizes the probability α of reaching this set
of states.

The second variant, called MIN is more refined
and asks to synthesize the strategy πMIN that mini-
mize the expected number of steps N that are needed
(including resets of M) in order to observe σz. This
strategy πMIN is played and the sequence of observa-
tions σz is observed after an expected number of N
steps. Again, we use STORM to compute this strat-
egy in polynomial time. It can be computed as the
strategy that minimizes the expected cost (each step
costs 1) to reach a state of the form (s,k) where k is
the length of the sequence of observations σz in the
MDP M′ described in the previous paragraph.

5 FORMAL GUARANTEES OF
THE LEARNING FRAMEWORK

Our framework provably offers two guarantees that
can be stated as follows: (1) When playing π∗H on-
line, with probability 1: either we obtain V (π∗H ) in the
long-run or we observe a counter-example to H , (2)
If the expert’s value, Vexpert is less than the long-run
value of playing the optimal strategy (of the underly-
ing reward machine R ), then with probability 1, we
learn hypothesis H such that V (π∗H )≥Vexpert. In the
rest of this section, we prove these two claims.

5.1 Consequence of playing π∗H on
M⊗x

λ
R

We introduce a special counter-example state CE
for the theory in this section. CE is entered when
a counter-example is encountered. To describe the
effect of playing π∗H online, we need to work in
the state-space (S×UR ×UH ) ∪ {CE} of process
M⊗x

λ
R ,H (defined below) and to study the asso-

ciated Markov chain when π∗H is used. Intuitively, we
use s and uH in 〈s,uR ,uH 〉 to determine what action
is played by π∗H . The reward observed online from
R and predicted by H are compared: either the re-
wards for uR and uH in the two RMs agree and the
RMs are updated accordingly, or we go to a special
counter-example state CE.

Formally, the transition probabilities between
states in this space are defined as follows. Let a ∈

A\{x} and z = λ(a,s′) then:

T (〈s,uR ,uH 〉,a,〈s′,u′R ,u′H 〉) =
T (s,a,s′) if


δ

R
r (uR ,z) = δH

r (uH ,z)∧
δ

R
u (uR ,z) = u′R ∧

δH
u (uH ,z) = u′H

0 otherwise.

T (〈s,uR ,uH 〉,a,CE) = ∑
s′|δR

r (uR ,z)6=δH
r (uH ,z)

T (s,a,s′)

T (〈s,uR ,uH 〉,x,〈s′,u′R ,u′H 〉) ={
1 if 〈s′,u′R ,u′H 〉= 〈s0,uR 0,uH 0〉
0 otherwise.

Additionally, CE is a sink (never left when en-
tered). Reaching CE occurs when a counter-example
to the equivalence between R and H has been discov-
ered online. If h is the history that reaches CE, then h
can be used to restart L∗ and compute a new hypoth-
esis H ′ as it contains a sequence of observations on
which R and H disagree.

Definition 5.1 (BSCC (Baier and Katoen, 2008)). Let
M = 〈S,A,T,s0〉 be an nrMDP and C⊆ S. Let P(s,s′)
be the probability of reaching state s′ from state s (via
a sequence of actions). C is strongly connected if for
every pair of states v,w∈C, the states v and w are mu-
tually reachable, i.e., P(v,w) > 0 and P(w,v) > 0. A
strongly connected component (SCC) of M is a maxi-
mally strongly connected set of states. That is, C is an
SCC if C is strongly connected and C is not contained
in another strongly connected set of states D⊆ S with
C 6= D. A bottom SCC (BSCC) of M is an SCC B from
which no state outside B is reachable, i.e., for each
state b ∈ B it holds that ∑b′∈B P(b,b′) = 1.

Theorem 5.1. When playing π∗H online, with prob-
ability 1: either V (π∗H ) is obtained or a counter-
example to H is found.

Proof To prove this theorem, we show that if no
counter-example is found when playing π∗H online
(playing on M⊗x

λ
R ,H ), then the long run mean-

payoff of the observed outcome is V (π∗H ) with prob-
ability one.

First, we note that the MDP M⊗x
λ

H on which
we compute π∗H is strongly connected. As a conse-
quence, all the states of the MDP have the same opti-
mal mean-payoff value which is V (π∗H ). It also means
that all the states in the associated Markov chain,
noted M ⊗x

λ
H (π∗H ), have the same value V (π∗H ).

In turn this implies that all the BSCC of this Markov



chain have the same value V (π∗H ). From that, we de-
duce that the mean-payoff obtained by a random walk
in those BSCCs has a value equal to V (π∗H ) with prob-
ability one (see e.g. (Puterman, 1994)).

Next, we are interested in the expected value ob-
tained when playing π∗H on M⊗x

λ
R ,H conditional

to the fact that no counter-example is encountered,
that is, while CE is not reached. We claim that the
behavior of π∗H on M⊗x

λ
R ,H is then exactly the

same as in M⊗x
λ

H . This is a consequence of the fol-
lowing property: there are only two kinds of BSCCs
in M⊗x

λ
R ,H (π∗H ): (i) {CE} and (ii) BSCCs B not

containing CE. When in B, R and H fully agree in
the sense that, for all 〈s,uR ,uH 〉 ∈ B, as CE cannot be
reached (otherwise B would not be a BSCC), the ac-
tion chosen by π∗H triggers the same reward from R
and H . So we conclude that the expected reward in B
is as predicted by H and is equal to V (π∗H ). Hence,
again the value observed will be V (π∗H ) with proba-
bility 1 and the theorem follows. �

5.2 Leveraging off Expert Knowledge

Now we show how one can take advantage of the
knowledge a domain expert has about what value can
be expected when playing optimally in the domain.
This idea is exploited in Step 3 of the description of
the flow of our algorithm (Sect. 4.1).

To this end, we first establish how we can find
counter-examples systematically using random explo-
ration. For that, we define the strategy πu which plays
uniformly at random all actions in A∪{x}, that is,

πu : S×UR ×UH 7→ ∆(A∪{x})

such that πu(〈s,uR ,uH 〉)(a) = 1/(|A| + 1).2 and
prove the following result.

Lemma 5.1. While playing πu online, a counter-
example is found (with probability one) if and only
if R and H are not equivalent.

Proof First, we note that the Markov chain M ⊗x
λ

R ,H (πu) is composed of two strongly connected
components: C1 = {CE} and C2 that contains all the
other states. We also note that C1 = {CE} is reach-
able in this Markov chain iff R and H are not equiv-
alent. So, when playing πu on M⊗x

λ
R ,H , two mu-

tually exclusive scenarios are possible. First, R and
H are not equivalent. Then, there are transitions from
C2 to C1, and C1 is the only BSCC of the Markov
chain. As a consequence, the execution of πu ends in
C1 with probability 1. Second, R and H are equiva-
lent. Then, there are no transitions from C2 to C1, and

2∆(X) is all probability distributions over set X .

C2 is the only reachable BSCC of the Markov chain
and no counter-examples exist. �

Suppose that a domain expert can provide us with
a value Vexpert which is realistic in the following sense:
Vexpert is below the true optimal value achievable on
M⊗x

λ
R . Then the following theorem holds.

Theorem 5.2. If Vexpert is less than or equal to the
optimal value V (π∗R ) of M ⊗x

λ
R , then with prob-

ability 1, a hypothesis H will be learned such that
V (π∗H )≥Vexpert.

Proof Note that if V (π∗H )<Vexpert, then it must be the
case that the hypothesized MRM H does not model
the underlying MRM R (i.e., they are not equiva-
lent). Furthermore, if V (π∗H )<Vexpert, then our algo-
rithm plays the uniform random strategy πu, and by
Lemma 5.1, a counter-example is found with proba-
bility 1 which triggers L∗ to be restarted in order to
obtain a new hypothesis H ′. Now, we note that the
scenario above can happen only a number of times
bounded by the number of states in R , because the L∗

algorithm is guaranteed to learn R after a number of
equivalence queries that is at most equal to the num-
ber of states in R (Angluin, 1987). So, either we find
a hypothesis that predicts a better value than Vexpert, or
we end up with an hypothesis H which is correct and
so equivalent to R , implying that V (π∗H ) =V (π∗R )≥
Vexpert. We conclude that our algorithm is guaranteed
to obtain online a mean-payoff value which is at least
Vexpert with probability 1. �

6 EXPERIMENTAL EVALUATION

Our online active-learning algorithm was imple-
mented, and evaluated on two small problem do-
mains.3 The two problems are also evaluated w.r.t.
a baseline based on neural networks. In this section,
we describe the baseline, and then in the following
two subsections, we describe the problem domain,
describe in more detail the experiment setup for the
particular problem and present the results. However,
some aspects of the experiments are common to all
our cases and discussed immediately:

For convenience, we refer to our framework as
ARM (for Angluin Reward Machine) and the base-
line as DQN (for Deep Q-function Network). When
using ARM, the number of actions allowed per trial
includes actions required for answering membership
queries and for searching for counter-examples. Re-
wards received during exploration, learning, exploita-
tion are all considered. In all domains, the agent can

3For the L∗ algorithm, we used a Python
implementation provided by Georges Bossert
(https://github.com/gbossert/pylstar).



move north, east, west and south, one cell per ac-
tion. To add stochasticity to the transition function,
the agent is made to get stuck 5% of the time when
executing an action. We measure the cumulative re-
wards gained (Return) per episode. Procedure getEx-
perience is set to use mode MIN (cf. Sect. 4.2) in all
experiments. Episode length, total number of steps
(actions) and number of trials performed are domain
dependent; they will be mentioned for each domain.
To achieve similar total experiment times (per prob-
lem), episode lengths of DQN were increased.

6.1 Deep Q-learning Baseline

We implemented a Deep Q-learning network agent
(DQN) (Mnih et al., 2015). To improve the stability
and the convergence speed of the learning, we aug-
mented the agent with two standard techniques: expe-
rience replay (Mnih et al., 2015) and double-q func-
tion (Hasselt, 2010).

Let fQ : Ŝ→ R|A| be a standard deep Q function,
receiving as input a state representation and return-
ing as output the real vector of Q-values for each sin-
gle action. The state representation space Ŝ depends
on the particular domain. For the domains used in
this paper, it is the set of (x,y) coordinates of the
grid. Since ‘regular’ deep Q-learning algorithms as-
sume a Markovian setting, a naive application of deep
reinforcement learning techniques does not provide
us with a fair competitor. Therefore, we enhanced
our DQN baseline with the ability to make decisions
based on observation history: In particular, we ex-
tended the standard deep Q network in three ways.

First, we added a one-hot representation of the
current observation to the input space. Let i be the
index of the current observation, its one-hot represen-
tation is a zero-vector with a single 1 in position i. For
example if the observation map is indexed as i= 2 out
of 4 possible observations, its one-hot representation
is v = [0,1,0,0]. Let Ô be the space of one-hot repre-
sentations of the current observation.

Second, we added a bag-of-words (BoW) repre-
sentation of the past observations. Given a sequence
of past observations, its BoW representation is a vec-
tor v representing the multiset of the observations, i.e.
vi is equal to the number of times observation indexed
by i is encountered in the history. For example, if the
past observations were 〈map, treasure,map〉 (in that
order), indexed by I = [2,4,2], then their BoW repre-
sentation is h = [0,2,0,1]. Note that if the agent sees
〈treasure,map,map〉 (in that order), then the repre-
sentation of the history is still h = [0,2,0,1]. Hence,
a Q-learning agent can distinguish bags of observa-
tions, but not the order in which they were perceived.

Figure 3: Results for the Treasure-Map world (averaged
over ten trials for ARM and twenty trials for DQN).
Episodes were 507 steps long for ARM and 1014 steps
for DQN. Average running-times per episode: ARM 24.9s;
DQN: 10.4s.

Sometimes BoW is a sufficient statistic for discrimi-
nating between cases, like in document classification
(McTear et al., 2016).Let Ĥ be the set of BoW repre-
sentations of the past observations.

Third, we extended the action set A with a reset
action that mimics the behavior of x in our ARM
framework. This is resembling the way our algorithm
interacts with the environment. The reset action is a
special one, because the agent is forced to reset its
past observation representation (i.e. set to the zero-
vector) each time this action is selected.

Finally, we can define the history-augmented deep
Q function as the function f h

Q : Ŝ× Ô× Ĥ→ R|A|+1.
We implemented the deep network and the Q-

learning algorithm in Tensorflow (Abadi et al., 2016).
Once the input space of the network is augmented
with the history-based information, standard RL
frameworks can be exploited. In particular, we se-
lected KerasRL (Plappert, 2016). The neural network
architecture is a feed-forward neural network, with
three hidden layers with fifty ReLU units each and
a linear output layer. The Adam algorithm (Kingma
and Ba, 2014) with a learning rate of 10−3 is selected
as weight-update rule. The epsilon-greedy policy is
used, with ε = 0.1.

6.2 Treasure-Map World

The agent starts in one of the four corners of one of the
five areas; one of these twenty locations is randomly
chosen. The default cost c was set to -0.1 and the cost
for resetting was set to -10. The optimal value for this
domain is 9.884 (computed by STORM for the cor-
rect reward machine). We set Vexpert = 9. The perfor-
mance of our framework applied to the Treasure-Map
world can be seen in Figure 3. On average, for ARM,
there were 835 membership-queries, and 509 counter-
examples found during exploitation. The huge vari-
ance in the return for DQN is most likely due to its
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Figure 4: The cube reward machine.

Figure 5: Results for the Cube problem (averaged over five
trials). Episodes were 75 steps long for ARM and 600 steps
for DQN. Average running-times per episode: ARM: 1.1s;
DQN: 45s.

dependence on seeing the ‘right’ sequence of obser-
vations, which is influenced by the stochasticity of the
underlying MDP. ARM relies on an optimal strategy
based on a well-defined model (the current MRM),
which makes variance of return minimal.

6.3 The Cube Problem
The environment is a 5-by-5 grid without obstacles,
and with two cells where a is perceived and two cells
where b is perceived. The underlying reward model
is the one shown in Figure 4 (top). The agent always
starts in the bottom right-hand corner. The default
cost c is 0 and the cost for resetting is -1.

The optimal value for this problem is 0.1624
(computed by STORM for the correct reward ma-
chine). We set Vexpert = 0.15. If Vexpert is set too high,
then the agent will keep on seeking counter-examples.
Initially (for the first hypothesis RM), STORM com-
putes an optimal value below 0.15. Random explo-
ration commences, a counter-example is soon found
and a correct reward machine is learnt.

The performance of our framework applied to the
Cube problem can be seen in Figure 5. On average,
for ARM, there were 850 membership-queries, and
248 counter-examples found during exploitation. In
this example (and in the Office-Bot domain), another
benefit of the L∗ algorithm can be seen: it produces
the minimal machine (Figure 4, bottom), which usu-

ally makes its meaning clearer, and produces expo-
nentially smaller synchronized product MDPs.

7 CONCLUSION

We proposed a framework for learning and exploiting
non-Markovian reward models, represented as Mealy
machines. Angluin’s L∗ algorithm is employed to
learn Mealy Reward Machines within a Markov De-
cision Process setting. The framework was imple-
mented and used for evaluation as a proof-of-concept.

Some useful theorems were proven, relying on ex-
isting theory of probabilistic model-checking and au-
tomata learning theory. The main result is that, under
reasonable assumptions, we can guarantee that a sys-
tem will eventually achieve a performance level pro-
vided by a domain expert if that performance level is
realistic/achievable for that domain.

We found that in empirical evaluation, the frame-
work learns the underlying MRM of the applicable
domain correctly, that is, after answering a finite num-
ber of membership queries as posed by the L∗ algo-
rithm, within a finite time. And it significantly outper-
forms a Deep Q-Network augmented to take history-
based observations as input. Moreover, the learnt
MRM is minimal; least possible number of nodes.

As investigated in some of the related literature
mentioned in the introduction, an agent with a non-
Markovian (reward) model is better equipped to avoid
dangerous or undesirable situation in some domains.
A challenge is, how to safely learn non-Markovian
(reward) models in unsafe domains? Some work
has been done on safe learning/exploration (Turchetta
et al., 2016; Hasanbeig et al., 2019b; Cheng et al.,
2019)

We expect that more complex non-Markovian
reward environments will require intelligent explo-
ration strategies. It will be interesting to investi-
gate the exploration-exploitation trade-off in the non-
Markovian setting. And if an expert value is not
available, one could employ an ε-greedy (or similar)
strategy to allow for the agent to observe counter-
examples if they exist. This will be investigated in
future work.
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