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ABSTRACT

Machine learning is being integrated into a growing number
of critical systems with far-reaching impacts on society. Un-
expected behaviour and unfair decision processes are coming
under increasing scrutiny due to this widespread use and its
theoretical considerations. Individuals, as well as organisa-
tions, notice, test, and criticize unfair results to hold model
designers and deployers accountable. We offer a framework
that assists these groups in mitigating unfair representations
stemming from the training datasets. Our framework relies
on two inter-operating adversaries to improve fairness. First,
a model is trained with the goal of preventing the guessing
of protected attributes’ values while limiting utility losses.
This first step optimizes the model’s parameters for fairness.
Second, the framework leverages evasion attacks from ad-
versarial machine learning to generate new examples that
will be misclassified. These new examples are then used
to retrain and improve the model in the first step. These
two steps are iteratively applied until a significant improve-
ment in fairness is obtained. We evaluated our framework on
well-studied datasets in the fairness literature — including
COMPAS — where it can surpass other approaches concern-
ing demographic parity, equality of opportunity and also the
model’s utility. We investigated the trade-offs between these
targets in terms of model hyperparameters and also illus-
trated our findings on the subtle difficulties when mitigating
unfairness and highlight how our framework can assist model
designers.
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1. INTRODUCTION
Machine learning eases the deployment of systems that tack-
les various tasks: spam filtering, image recognition, etc. One
of the most trendy applications is decision support. These
systems give recommendations on who should get a loan,
predict who could commit subsequent offences, etc. based
on data describing individuals. Such systems have a desir-

able property: they provide objective, supposedly consistent
decisions based on a collection of data. At first glance, this
could counteract unfair decisions made by humans.
However, they still exhibit unfair behaviour. Such behaviours
can impact individuals belonging to a specific social group.
Well-studied examples include the COMPAS system that
predicts the recidivism of pre-trial inmates [2, 10] and keep
taking decisions in favor of Caucasian people compared with
African-Americans. We consider fairness where the impact
on individuals can be categorized as either allocational harm
or representational harm [8]. With allocational harm, the
favorable outcome (e.g. bail being granted) differs between
social groups. Representational harm is more subtle, and
include differences in performance between social groups,
and stereotyping. We focus on allocational harm in this
work, as decision support systems with different outcomes
can affect social groups far beyond the outcome itself.
If an allocational harm exists when advising for a favorable
outcome for a group, the decision towards an other group
to not receive the same outcome can, ultimately, create a
feedback loop where unfair behaviours are amplified [19, 32].
For example, consider a system that imposes more expensive
loans to African-American people, who then fail to repay
them, that will lead them to ask for another loan, etc.
To avoid such consequences, researchers increasingly focused
on incorporating fairness as objectives in their systems. In
discrimination-aware data mining (DADM), modifications
were developed and applied to data, learning algorithms, or
resulting patterns and models [25]. Recently, adversarial
fairness continues in this direction with, for instance, re-
search on learning representations [31, 43] and task-specific
fair models [1, 36, 38].
Adversaries are also used when assessing the security of ma-
chine learning based systems. Biggio and Roli [5] synthe-
sised a decade of research in adversarial machine learning.
This domain aims at finding or creating examples that are
problematic for a machine learning model, e.g. Biggio et al.
[7], Papernot et al. [33, 34]. These examples can be injected
directly into the training phase to perturb the training of
the model, known as poisoning attacks, or they can simply
be used to bypass the model that is supposed to act as a
filter, in this case, they are called evasion attacks.
In this paper, we propose a new framework implementing



a gray-box fairness scenario coupling evasion attacks and
fair machine learning using gradient reversal. We evaluate
our framework on three datasets: (i) COMPAS, (ii) Ger-
man Credit, and (iii) Adult. Our framework improves demo-
graphic parity and equal opportunity when comparing to the
state of the art while globally improving the model’s utility.
We thus reconciles fairness and model performance.
This paper is an extension of our previous work [12], which
was presented at the first workshop on Bias and Fairness in
AI (BIAS 2020) held jointly with the ECML-PKDD confer-
ence. With respect to the original contribution, we provide:
(i) a detailed analysis of tradeoffs between fairness and util-
ity by computing and charting a Pareto front; (ii) a more
nuanced interpretation of our results based on 30 random
hyperparameter trials, where we calculated the expected val-
idation accuracy, and (iii) a discussion on the role of prior
domain knowledge to create both valid and realistic examples
to feed to the model.
This paper is organised as follows: Section 2 discusses related
work on adversarial machine learning techniques but also on
measuring and mitigating unfairness. Section 3 presents our
new framework, followed by its evaluation on the COMPAS,
German Credit and Adult datasets in Section 4. Section 7
concludes and gives an outlook on future work.

2. BACKGROUND AND RELATED WORK

2.1 Poisoning and Evasion Attacks
Adversarial machine learning assesses the required effort to
make a classifier unusable by forcing it to perform so many
errors that users will not trust its predictions anymore [5].
The generation of adversarial attacks follows this black-box
process: (i) probe an existing target model to gain informa-
tion about it, (ii) copy an existing example, (iii) apply an
adversarial technique that will modify the example depend-
ing on the desired goal.
Various models can be attacked including support vector
machines (SVMs), linear models and even neural networks
(NNs) [7, 33, 34]. Since all machine learning models are
based on a similar set of assumptions, including the fact that
they statistically approximate data distributions, adversar-
ial machine learning leverage on these assumptions to train
a surrogate classifier to start the attack on. After the at-
tack finishes, because of these assumptions, newly generated
data examples can be transferred back to the original target
model [13]. Only one restriction remains on the surrogate
classifier, attacks are gradient-based techniques requiring the
discriminant function to be differentiable. We distinguish
between poisoning attacks and evasion attacks. In the for-
mer, malicious examples are introduced in the training set
in order to significantly and permanently affect the model
to be trained [4, 6]. In the latter, malicious examples are
provided at test time to harm the model without changing
it [7].
In related work by Solans et al. [39], poisoning attacks
have been used to influence the fairness of machine learning
models in a black-box manner. The authors have also linked
their poisoning attack to demographic parity, an evaluation
metric that will be introduced in Section 2.2.
Kulynych et al. [29] also used poisoning attacks, specifically
for countering effects of credit scoring systems. In addition,
they provide an outline of how users can affect optimiza-

tion systems to mitigate negative external impacts, called
Personal Optimization Technologies (POTs). This frame-
work could also be used to ground the adversarial attacks
generated by the Feeder from our framework.
In this paper, we consider evasion attacks that are performed
on an already trained model. We craft adversarial examples
that are supposed to belong to a class while the model will
assign them with a different one because of specific charac-
teristics, highlighting an unfair behavior regarding a certain
population. By carefully reintroducing these examples dur-
ing retraining, we hypothesize that the retrained model will
be fairer. While we rely on a similar example generation
technique, our exploitation goal differs from [39].

2.2 Evaluating Fairness
There exist several measures of fairness in the literature,
e.g. demographic parity [16], equalized odds and equalized
opportunity [26], statistical parity [21, 43], disparate im-
pact [10, 21], and threshold testing [35]. They are categorized
into different family of measures, presented in the FairML
book [3], depending on their mathematical expression. In
the following, we focus on two different measures: (i) de-
mographic parity which is probably the most popular but
also controversial and (ii) equalized opportunity also quite
popular but from a different family of measure. We define
all measures via the predicted values of the classifier Ŷ and
the protected attribute A. We identify the disadvantaged
group with A = 1 and the privileged group with A = 0. The
similarities of predictions are described for Ŷ = 1.
Since the focus of most fairness measures is on the disadvan-
taged group having fewer (desired) opportunities, Ŷ = 1 is
generally the desired outcome. Measures usually come in two
forms. The first one expresses the requirement that the pre-
dicted values of the classifier Ŷ conditioned on the protected
attribute be equal [9]. Most of the time, this strict equality
in the outcome predictions between both groups is unrealis-
tic. The relaxed form accepts the previous equality not to be
strict within a range that is to be determined. For instance,
in a legal setting, the US Equal Employment Opportunity
Commission (EEOC) uses the Demographic Parity ratio (as
defined by Def. 2.1 and 2.2) with τ = 0.8 (“80% rule” [21]),
stating that disparate impact caused by employment-related
decisions or structures can only be ascertained if DPR ≤ 0.8.

Definition 2.1. Demographic parity (DP). DP is the equal-
ity or similarity of prediction outcomes as an absolute differ-
ence [16, 36]:

DP =
∣

∣

∣
P (Ŷ = 1 | A = 0)− P (Ŷ = 1 | A = 1)

∣

∣

∣
≤ ǫ. (1)

Definition 2.2. Demographic parity ratio (DPR). DPR is
the equality or similarity of prediction outcomes as a ratio:

DPR =
P (Ŷ = 1 | A = 1)

P (Ŷ = 1 | A = 0)
≥ τ. (2)

Demographic parity has received some criticisms, since the
measure does not necessarily report on what many would de-
fine as fairness [16]. This issue stems from ignoring both the
true outcome and individual merits. For instance, consider
a selection procedure where two individuals apply and both
belong to the same protected group. The entity that has to
make the selection needs to select one individual from this



protected group, regardless of their qualification, in order
to achieve demographic parity. Let say that one individual
is qualified (i.e., with high chances to get a positive true
outcome Y = 1) and the other one is not. Deliberately se-
lecting the unqualified individual would not be considered as
fair regarding the other (qualified) applicant; however, the
entity would still satisfy demographic parity. So these to-
ken individuals are not guaranteeing fairness since qualified
individuals from the protected group are still mistreated.
Addressing the criticisms of demographic parity, Hardt et al.
[26] presented two other metrics that extend the aforemen-
tioned ones. By including the true outcome Y , the authors
show that this variable can serve as a justification for the
predicted outcome. For example, in the case of COMPAS,
this is the recidivism rate as measured by violent crimes in
a two-year window. Conditioning by the true outcome is a
justification that the authors consider to be a suitable inter-
pretation of the task-specific similarity measure from Dwork
et al. [16], which can otherwise be difficult to come up with.
This is also very similar to disparate mistreatment [3, 41]
used as an evaluation metric by Adel et al. [1].

Definition 2.3. Equal opportunity (EO). EO requires an
independence Ŷ ⊥⊥ A | Y of Ŷ and A conditioned on the
true outcome Y . Expressed as a difference, this yields:

∣

∣

∣
P (Ŷ = 1 | A = 0, Y = 1)− P (Ŷ = 1 | A = 1, Y = 1)

∣

∣

∣
≤ ν.

(3)

“Equality of opportunity” is satisfied if ν = 0, and larger
absolute values are indicative of unfairness in the model or
data.

2.3 Fair Neural Networks
Several works tried to reduce the impact of data imbal-
ance [20, 30] and data representations over ML models [24,
27]. In addition, fair models have been studied for a variety
of learning algorithms, such as Naive Bayes classifiers [9] or
SVMs [42]. Nowadays, the focus is also on neural networks
due to their prediction performance [1, 31, 37].
Some researchers mitigate unfairness in neural networks us-
ing white-box adversaries [1, 17, 31, 37, 44]. In all these
instances, a new model architecture is proposed with two
goals: (i) predicting the main attribute Y (which we will
refer to as the utility of the model ; with Y = 1 being the pos-
itive outcome); (ii) not being able to predict the protected
attribute A (with A = 1 considered as belonging to the pro-
tected group). The joint goals can be formally defined as a
min max optimization problem [17] over the loss function L,
i.e., minθ maxφ L (θ, φ) , with an adversary φ and an encoder
with parameters θ. We use this representation to predict
both Y and A via a white-box adversary and a neural net-
work. Adel et al. [1], Ganin et al. [22], Raff and Sylvester
[36] all proposed to optimize a variant of the following loss
function following

L(θ, φ) = Eθ,φ(X,Y )− λDθ,φ(X,A), (4)

with Dθ,φ the loss for predicting A from X, and Eθ,φ the
loss for the target prediction Y also from X and λ a hyper-
parameter.
Gradient reversal was introduced by Ganin et al. [22] for
domain adaptation, and later adapted by Raff and Sylvester

[36] and Adel et al. [1] who treated the protected attribute
A as a domain label. The gradient reversal strategy assumes
that multiplying by a negative sign will increase the loss
Dθ,φ(X,A) of the branch ha : X → Â and yields a rep-
resentation X∗ that is maximally invariant to changes in
A [1, 36].
Using gradient reversal for fairness is based on the intuition
that the inability to predict A is a suitable fairness goal.
This differs slightly from the fairness evaluations presented in
Section 2.2, but a similar loss function from Equation 4 based
on demographic parity led to the architecture of FAD [1],
which leverages gradient reversal specifically for fairness.
However, there is no guarantee that gradient descent with
flipped gradients does guarantee the maximal invariance re-
quired for fairness. In the worst case, maximizing the loss
Dθ,φ(X,A) can even result in the opposite optimum for the
shared layers with regard to A, because flipping the gradi-
ents with regard to A makes it perform gradient ascent for A.
With the shared layers performing gradient ascent w.r.t. A

followed by gradient descent in the adversarial branch, this
creates a discrepancy between the parameters defining both
components for predicting A. This means that the model is
not only not maximally invariant on the last shared layer, but
that the shared layers are still explicitly learning to predict
the protected attribute A.
This is one of the major limitations of using GRL for fair
models, as predictions of main attribute Y are not made
on ‘fair’ representations. Elazar and Goldberg [18] made
an empirical observation on leakage of protected attributes
specifically for text-based classifiers that can also be traced
back to this. In Section 3, we clarify how our ethical adver-
saries framework mitigates this issue, thus allowing GRL to
be used for training fair models.

3. ETHICAL ADVERSARIES
Our main contribution is a framework that joins evasion
attacks (see Section 2.1) and fair neural networks (see Sec-
tion 2.3) to improve the overall fairness of the system. Thus,
it relies on two types of ethical adversaries: (i) a Feeder that
uses evasion attacks to create examples highlighting unfair
representation of a certain population and (ii) an adversar-
ial Reader that tries to predict the protected attributes of
interest (age, gender, race, etc.). In addition of exhibiting
fairness issues in the data and in the trained model, our
framework leverages gradient reversal to minimise the abil-
ity of the reader to guess protected attributes ultimately
yielding a fairer ML model without sacrificing utility.
Figure 1 presents the global architecture. Our network fol-
lows a typical architecture with a GRL (discussed in Sec-
tion 2.3 and is represented by the Reader). The Feeder, on
the left part, performs evasion attacks as discussed in Sec-
tion 2.1. Both adversaries interact with each other in an
iterative manner, forming the main difference between our
framework and GANs [23]. To achieve better fairness and
utility outcomes, our process –that consists of two steps –
can be performed multiple times.
The first step starts with a trained neural network (target
label in Figure 1) predicting a main attribute Y . In this
network, the adversarial Reader adds a second branch that
tries to predict a protected attribute A while the gradient
reversal layer strives to minimise the confidence of the Reader
to predict A. Additionally, as we discussed in Section 2.3,
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Figure 1: Ethical adversaries architecture: adversarial feeder on the left, and integrated adversarial reader on the right.

during the backward pass, a hyperparameter λ contributes
to prioritize the utility versus the adversarial branch of the
network. The model is trained with the joint loss of the
original prediction target and the protected attribute.
In a second step, the Feeder, on the left part, performs eva-
sion attacks as discussed in Section 2.1. The Feeder creates
a set of adversarial points from an approximation of the tar-
get model, a.k.a a surrogate model, that is constructed on
the same dataset as the model under attack. Our surrogate
model is an SVM which it uses a radial basis (RBF) kernel
function to cope with different level of model complexity. We
selected this kernel since preliminary results on COMPAS
showed that it is expressive enough and Biggio et al. [7] de-
tailed how evasion attacks can be directly applied to SVMs
with RBF kernels. The Feeder performs multiple evasion
attacks on the surrogate function to generate adversarial
examples that are similar to the training examples, but are
wrongly classified.
For each iteration of this two-step process, adversarial ex-
amples are generated and included in the training set for
adversarial retraining. Each adversarial example is added to
the training set with the same label as the original example
from which it was generated. The effect of the ratio of ad-
versarial points in the dataset—the adversarial fraction—is
further analyzed empirically in Section 4.3.
The Feeder is constrained to a maximum perturbation, so
the adversarial examples that are generated are still similar
to the original training examples. The perturbation distance
dmax is the same for all input features and is applied after
normalizing the data. Because the adversarial examples are
within dmax of the training examples and thus similar, we
assume all generated examples are also valid examples. The
Feeder is ambivalent to possible—hard and soft—constraints.
We opted to keep the Feeder ambivalent to eliminate an-
other possible source of unfairness. We assume that the data
on which the models are trained exhibits unfair patterns,
something which we aim to correct with the Ethical Adver-
saries framework. It is therefore challenging to introduce
constraints that would limit that adversarial examples to a
limited set, especially when unfair patterns could discrim-
inate minorities. However, we recognize that this uncon-
strained approach can be at odds with business logic and
future work could focus on including constraints.
In terms of performance, constructing a surrogate classifier is
the limiting factor. Using SVMs implies that the time com-
plexity of the entire framework is O(n3) with n the number
of data points. The impact of adversarial attacks is linear on
the overall complexity. But we should notice that adversarial

retraining may drastically increase time to compute a sep-
arating function since included adversarial examples make
the separation more difficult to find, or on the contrary, may
not affect the function at all, if too few adversarial examples
are included.
Both reading and feeding steps are run successively until
we achieve better fairness and utility outcomes, which we
demonstrate in Section 4.4. A key benefit of this process is
that we prevent the Reader from learning biased representa-
tions, since these features cannot be used as proxies for the
protected attribute anymore.

4. EVALUATION
We evaluate our model on three popular datasets: COM-
PAS [2], German Credit, and the Adult Census [28]. The
COMPAS dataset was originally a sample of outcomes from
the COMPAS system that predicted the risk of recidivism.
This caused a debate about whether or not this score was dis-
advantaging African Americans [2, 10, 11, 14]. The dataset,
therefore, includes the race of individuals. In line with pre-
vious research [1, 2, 42], we will only use individuals from
Caucasian or African-American descent. As other groups
are clearly less represented (e.g., only 31 instances for peo-
ple of Asian descent), this raises issues during training and
evaluation. It implies that there are minorities that are ex-
cluded from many studies; more datasets would be needed
to study whether patterns of unfairness are similar and mit-
igation measures can be transferred, or whether these affect
different demographics differently. COMPAS is composed of
5,278 instances and represented by 12 features. The target
variable is whether a person has recidivated within two years.
The race is used as a protected attribute.
The Adult dataset gathers 32,000 instances represented by 9
features. We use gender as a protected attribute and the bi-
nary target variable is income, whether someone earns more
than 50,000 USD. German Credit is the smallest dataset,
with only 1,000 instances and 20 features. There is a class
imbalance, with 70% of all samples good credits and only
30% bad credits. The protected attribute is age, with a
threshold at 25 years.
For reproducibility purposes, we have publicly released our
code and provided users with a template that they can incor-
porate in their projects. It is compatible with all PyTorch
models with only minor modifications, i.e., adding an ad-
versarial branch and replacing the training loop. We recall
that we have used the secML package1 (v0.11) for running
evasion attacks.
1https://secml.gitlab.io/



(a) Naive model (b) Model trained with a GRL
(λ = 50)

(c) Model trained with our
framework

Figure 2: T-SNE dimensionality reduction of the activations in the last hidden layer on the held-out COMPAS test set.
Distinct colors are used for the reported race of individuals in the dataset: either African-American or Caucasian .

4.1 Training setup
The model under attack. We start from a neural network of 3
hidden layers with 32 hidden units for COMPAS and German
Credit and 128 for Adult, due to its larger encoded input.
Each of the hidden units has a ReLU activation. This activa-
tion function is computationally efficient and mitigates the
issue of vanishing gradients since the function never saturates,
which makes it one of the most popular activation functions.
For the output units, a softmax activation was used to get
the classification and a linear activation for COMPAS. The
network, including the adversarial reader, is trained with the
Adam optimizer with β1 = 0.9, β2 = 0.9999 and an initial
learning rate lr = 0.01, which is adjusted by a factor of 0.1
when reaching a plateau.
The adversarial reader. The adversarial reader is part of the
model under attack and therefore follows the same training
regime. The joint loss follows Equation 4 by including the
GRL. The individual losses for both hA and hy are binary
cross-entropy loss, except for COMPAS. In that case, the
risk score is predicted as a regression problem with the MSE
loss and then thresholded at 4 (low vs medium and high
risk).
The adversarial feeder. In our setting, we can use the same
training set for both the feeder and reader since they are
part of the same, unique architecture.
We also approximate—relying on the earlier discussed trans-
ferability of attacks [13]—the attacked model by an SVM
with a radial basis function kernel. We set the hyperpa-
rameters C and γ with a grid search with a reduced num-
ber of values: respectively {0.0001; 0.001; 0.01; 0.1; 1.0} and
{0.01; 0.1; 1; 10; 100; 1000}. We performed 10-fold cross vali-
dation.

4.2 Mitigating unfair representations
For each individual for the COMPAS test set, all three models
derive a representation in the last hidden layer, on which we
applied a t-SNE dimensionality reduction for a two-dimensional
visualisation.
The model without fairness constraints (Figure 2a) has slight
separation with regard to the protected attribute, but it
is clearly separable in the representation from the model
trained with a GRL (Figure 2b). This is also shown by re-
training a one-layer perceptron on these representation. The
model that was originally trained to predict only recidivism

could be used to classify the protected attribute race with
AUC = 0.71. The adversarial branch ha that was trained
simultaneously has an AUC = 0.44 As we mentioned ear-
lier, this branch can be limited in predicting the protected
attribute A. Which is the case here, as an independent
perceptron has AUC = 0.92.
Here, we demonstrated that the hidden representation ob-
tained by gradient reversal, not only still contains informa-
tion about the protected attribute, but contains a stronger
signal. Our architecture that joins ‘adversarial fairness’, also
called the Reader, and ‘adversarial learning’, or the Feeder,
(see Figure 1) leverages utility- and fairness-focused methods
in a better way than the modification of the model alone. By
injecting noise with the adversarial Feeder, our framework
successfully mitigated this unfair representation, as shown
in Figure 2c.

4.3 Effect of adversarial fraction
Figure 3 displays the effect of the adversarial fraction in the
training dataset on COMPAS. When adversarial examples
(equivalent to 25% of the training set size) are added to the
training set, the utility is maximal. With higher fractions,
the utility decreases and the development of the DP ratio
fluctuates. This could stem from the minimax formulation,
where a small fraction (i.e., 25%) helps optimize better for
this saddle point, but higher fractions only add noise. We
use this fraction for all further experiments, in future work
this could be automated with a custom stopping criterion.

4.4 Benchmark results
Table 1 presents our results on the three datasets. We com-
pare them with (i) a baseline without fairness goals, i.e., a
neural network without any particular control on fairness as-
pects, (ii) a re-implementation of the GRL [1, 22, 36] and (iii)
the reported results from other works that incorporate fair-
ness and cover a wide range of learning algorithms: Naive
Bayes [9], random forests [37], SVMs [42] and neural net-
works [36, 43]. The models’ utility was evaluated by binary
classification accuracy and macro-averaged F1 score; the lat-
ter highlights some issues when dealing with class imbalances,
as is the case for German Credit.
Fairness is evaluated with demographic parity, both as an
absolute difference (DP) and as a ratio (DPR), and equal
opportunity (EO). Adel et al. [1] also report results on
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Figure 3: Fairness and utility measures after each attack iteration on COMPAS (Batch size of 1024, λ = 100, epochs=100, 50
adversarial points per iteration)

Table 1: Results on the three datasets. An obelisk (†) show results reported by original papers. Results of classifiers without
fairness constraints are reported as a baseline. Best results are in bold typeface. An asterisk (∗) indicates a division by zero.

Model ACC F1 DP DPR EO

Adult

Baseline without fairness constraints 0.839 ± 0.009 0.763 0.173 0.296 0.096
GRL 0.612 ± 0.012 0.518 0.059 1.931 0.061

NBF (NB) [9] 0.773† — 0.000
† — —

NBF (EM) [9] 0.801† — 0.001† — —
Grad-Pred [36] 0.754† — 0.000

† — —
FF [37] 0.753† — 0.000

† — —
LFR [43] 0.702† — 0.001† — —
Ours 0.814 ± 0.009 0.689 0.031 0.784 0.179

German Credit

Baseline without fairness constraints 0.705 ± 0.063 0.624 0.018 0.929 0.198
GRL 0.710 ± 0.063 0.415 0.000 ∗ 0.000

Grad-Pred [36] 0.675† — 0.001† — —
FF [37] 0.700† — 0.000

† — —
LFR [43] 0.591† — 0.004† — —
Ours 0.730 ± 0.062 0.640 0.006 0.971 0.175

COMPAS

Baseline without fairness constraints 0.715 0.709 0.466 2.192 0.449
GRL 0.567 0.549 0.057 0.926 0.114
COMPAS risk predictions [2] 0.655 ± 0.029 0.654 0.289 1.829 0.000

Preference-based fairness [42] 0.675† — 0.380† — —
Ours 0.794 0.793 0.026 0.840 0.008

both COMPAS and Adult but use a different setup for the
Adult dataset. For COMPAS, the reported results (as well
as their unfair baseline) are significantly higher than in our
experiments, which we could replicate only when classifying
high-risk individuals. To make a meaningful comparison, we
also include our replication of FAD [1] as GRL.
The utility of our framework is the highest on the German
Credit and COMPAS datasets, even surpassing the baseline
model. On Adult, we achieve the highest utility of any model
with fairness constraints. These results show that our model
has only a very limited impact on the utility of the classi-
fier, and it can even contribute to the training as shown in
Figure 3. Note that on German Credit, a majority classifier
would achieve 70% accuracy already, hence the inclusion of
the F1 score.
Regarding fairness evaluation, our framework gives the best
results for COMPAS when considering DP. It also increases
fairness as measured by DPR, which is the only one of the con-

sidered measures that indicates the “direction” of unfairness.
More fairness is sometimes given by an increase towards par-
ity (DPR=1) for the disadvantaged group: for the German
Credit dataset, their chances of getting a loan increase. In
COMPAS, the baseline has a EO of 2.192, the “bias against
blacks” [2] decreases substantially with our model. For GRL,
the near-equality of DPR (0.926) appears fairer, but this is
not the case for DP and EO, where we observe an EO of
0.449 for GRL versus 0.008 for our model.
Figure 5 also reports the accuracy on COMPAS, however in
function of the number of hyperparameter trials to illustrate
how randomized hyperparameter assignments will affect the
results [15]. The hyperparameter λ was varied between the
interval [0.1, 200] and the batch size selected from the set
{256, 512, 1024, 2048}. Based on these results in relation to
both (i) a model without any fairness constraints and (ii)
a model with a GRL, we can conclude that our framework
does perform better on this task compared to GRL. In ad-



Figure 4: Pareto front of the utility, measured by
accuracy, and demographic parity (lower is better)
for COMPAS.
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Figure 5: Expected maximum validation accu-
racy in function of the number of hyperparam-
eter trials for COMPAS.

dition, given a sufficiently large compute budget it will even
surpass the naive model without fairness constraints, since
our model likely benefits from additional training examples.
Nevertheless, it remains sensitive to optimal or suboptimal
hyperparameter assignments, as is indicated by the large
confidence interval. This sensitivity is also confirmed by
the Pareto front in Figure 4, where many trials with large
(> 50) values for λ performed quite poor on both utility and
fairness.

5. CODE
We release an open source implementation— under the MIT
licence—of our framework at: https://github.com/iPieter/
ethical-adversaries.

6. TOWARDS DOMAIN KNOWLEDGE IN-

TEGRATION
While adversarial machine learning has been applied to the
world of images and videos, we applied it in a different con-
text. Our experiments aim at using evasion attacks to at-
tempt generating new instances that represent personas, pro-
files or persons’ representations. This context therefore forms
a new domain space bringing its own set of constraints and
value boundaries. In this section, we discuss the challenges
this context brings.
The first challenge relates to constraints’ heterogeneity. In-
deed, in the image domain, the representation of pixels is ho-
mogeneous and thus easy to constrain while running evasion
attacks. Yet, when it comes to different features representing
categorical information, the problem is more complex.
Consider age category or highest obtained diploma, this in-
formation is part of the global description of the profile of
a person and are usually categorical as only one choice is
important/allowed. Some machine learning algorithms (e.g.
SVMs) do not support easily such kind of categorical feature.
Still, to be able to use such algorithms with this kind of fea-
tures, categories can be decoupled into different features so
that are mutually exclusive. For instance, regarding the high-
est diploma, one would create the following features: “has
a Bachelor’s Degree”,“has a Master’s Degree”, “has a PhD

Degree”, etc. While evasion attacks will bring perturbations
to features independently, one needs to check the validity of
the attacks [40].
There are different strategies: check constraints after each
iteration and reject the latest modifications if any of these
constraints is violated, wait until the attack has finished to
reject the example in case of constraint violation, or even
tradeoffs between these two extreme strategies. In this paper
we did not applied a constraint enforcement strategy (see
Section 3), but rather focused on limited perturbations that
would generate similar examples to instances in the datasets,
therefore likely to be valid. A stricter constraint enforcement
strategy is left for future work.
The second challenge is linked to the prior domain knowledge
that should also be taken into account in order to make a gen-
erated example realistic. For instance, in the context of the
German credit dataset, it would be unlikely (and most prob-
ably illegal) that a kid (let’s say under 10 years old) surfs to
an online banking website to ask for a credit. We can easily
transform this prior legal knowledge into a hard constraint
and therefore consider that case invalid. As previously dis-
cussed, such constraints differ from the image domain. We
would need the help of solvers which can take time to run
and check all of them. Furthermore, some engineering may
be needed to transform features’ value into interpretable con-
straints for solvers and then back to the feature space. We
were able to check some boundary constraints for features’
value, but incorporating richer domain-knowledge is left to
future work.
Our kid would be even more unusual if they additional stated
that they had a PhD. While the fictional Sheldon Cooper
from the Big Bang Theory show got his PhD at the age of
sixteen and there exist actual cases of people obtaining their
PhDs at very young ages2, these are the kind of examples
we may still want to avoid since there not representative.
Because we relied on machine learning and statistical ap-
proaches, we did not see the case of one of our attack gen-
erating a kid holding a PhD. This can be explained by the
fact that no examples were given looking alike it, thus the
data distribution of the examples are not showing that this
2https://en.wikipedia.org/wiki/Kim_Ung-yong

https://github.com/iPieter/ethical-adversaries
https://github.com/iPieter/ethical-adversaries
https://en.wikipedia.org/wiki/Kim_Ung-yong


is a possibility (the stochastic gradient descent procedure
has no interest in trying to generating examples toward this
direction of the feature space).

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel architecture for integrat-
ing fairness constraints in machine learning models. Our
architecture consists of two adversaries: (i) an adversarial
reader that evaluates fairness constraints during model train-
ing and attempts to enforce them, and (ii) an adversarial
feeder that performs iterative evasion attacks to discover pre-
viously uncovered regions in the input space. We evaluated
our architecture on three well-studied datasets and showed
that it can deliver high utility to models while satisfying
fairness constraints. On COMPAS, we illustrated that our
architecture yields a model that surpasses an unfair baseline
regarding the utility (accuracy and F1 score) and fairness.
We provide evidence that gradient reversal alone is not suffi-
cient (it might even be detrimental) but that our combination
of adversaries leads to intrinsically fairer models.
There is room for future work. First, we may optimize the
runtime execution of the technique via faster learning of
surrogate models. Second, we could use the target model
directly instead of a surrogate classifier to support adver-
sarial attacks and assess if transferability properties hold
for fairness constraints. This requires heavyweight modifica-
tions of the secML framework to allow multiple output values
in neural networks. Third, one could define constraints in-
volving multiple features. Enforcing these domain-specific
constraints during attack generation raises questions on the
representation of the feature space and optimal convergence
of the algorithms. Fourth, our framework is evaluated against
allocational harms. More subtle differences— like a differ-
ence in the model’s performance—are also affecting social
groups. With some minor modifications, we suspect that
these types of unfairness can be addressed with our frame-
work. Finally, we would like to generate the most dissimilar
examples possible to ensure good coverage of the unseen
feature space with a minimal number of attacks.
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