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Abstract
Markov models are commonly used to model pro-
fessional sports matches as they enable modelling
the various actions players may take in a particular
game state. In this paper, our objective is to rea-
son about the goal-directed policies these players
follow. Concretely, we focus on soccer and pro-
pose a novel Markov decision process (MDP) that
models the behavior of the team possessing the ball.
To reason about these learned policies, we employ
techniques from probabilistic model checking. Our
analysis focuses on defense, where a team aims to
minimize its risk of conceding a goal (i.e., its op-
ponent scores). Specifically, we analyze the MDP
in order to gain insight into various ways an op-
ponent may generate dangerous situations, that is,
ones where the opponent may score a goal, during a
match. Then, we use probabilistic model checking
to assess how much a team can lower its chance of
conceding by employing different ways to prevent
these dangerous situations from arising. Finally, we
consider how effective the defensive strategies re-
main once the offensive team adapts to them. We
provide multiple illustrative use cases by analyzing
real-world event stream data from professional soc-
cer matches in the English Premier League.

1 Introduction
Markov models are one of the most commonly used mod-
elling formalisms in AI. Due to their ability to model dy-
namic environments and decision making, Markov mod-
els have been used to tackle a variety of different real-
world problems. One surprising area where Markov mod-
els have had a real-world impact is in analyzing professional
sports matches, where they have been applied to American
football [Goldner, 2012], basketball [Cervone et al., 2016;
Sandholtz and Bornn, 2018; Sandholtz and Bornn, 2020;
Wang et al., 2018], ice hockey [Routley and Schulte, 2015;
Schulte et al., 2017] and soccer [Hirotsu and Wright, 2002;
Rudd, 2011; Singh, 2019; Van Roy et al., 2021; Yam, 2019].
In the context of sports, Markov models enable modelling
the various actions players can take in particular game states.
This can yield insight into areas such as predicting match

outcomes [Dong et al., 2015], evaluating decisions such as
substitutions [Hirotsu and Wright, 2002] and shooting behav-
ior [Van Roy et al., 2021], and rating players [Cervone et al.,
2016; Routley and Schulte, 2015; Rudd, 2011; Singh, 2019;
Yam, 2019] which is useful for player acquisition.

Our objective is to reason about the goal-directed policies
that players follow which could help support the tactical plan-
ning of coaches. Specifically, we consider soccer and take a
defensive perspective where a team’s objective is to minimize
its chance of conceding a goal. To provide insight on how to
achieve this defensive objective, it is necessary to understand
how an opponent may generate dangerous situations, thus, it
is necessary to reason about their goal-directed policies. For
example, one will need to reason about which areas of the
pitch the opponent uses to generate shooting opportunities
from.

Our key insight is that probabilistic model checking tech-
niques provide an avenue for reasoning about such goal-
directed policies. These techniques provide formal guaran-
tees about the probabilities of certain behaviors occurring in a
Markov model. Moreover, probabilistic model checking can
allow us to reason about the efficacy of certain actions that
could disrupt your opponent’s attack. For example, it can rea-
son about how forcing an opponent to avoid reaching areas of
pitch would affect their probability of generating a shot. This
information can be used by coaches to aid in their planning.

Our framework for tackling this problem involves a two-
step process that combines learning a Markov Decision Pro-
cess (MDP) from data and using probabilistic model checking
to reason about the learned policy. In the first step we learn
a team-specific MDP to model an opponent’s offensive be-
havior. The MDP’s state space consists of locations on the
pitch and the actions involve moving between these states or
shooting on goal. We learn the observed policy of a team
using event stream data, which is a common source of data
about professional soccer matches that records information
such as the location and time of on-the-ball events like passes
and shots. In the second step we show how to use the proba-
bilistic model checker PRISM [Kwiatkowska et al., 2011] to
reason about the learned MDP in a number of different ways.
First, it allows for reasoning about how an opponent may gen-
erate a scoring opportunity. Second, it allows for reasoning
about the effect certain defensive strategies would have on
reducing the chance of conceding a goal. Furthermore, we



can estimate how effective these strategies remain even if the
opponent were to adapt to them.

The model provides actionable explanations on the be-
havior of opponents and can be used to provide invaluable
insights to coaches when they are planning their strategies
against them. To summarize, this paper makes the following
contributions:

• it suggests a novel and real-world application that in-
volves verifying properties of learned models in the con-
text of sports;

• it proposes a novel MDP for modelling the tactical be-
havior of professional soccer teams;

• it shows how the probabilistic model checker PRISM
can reason about the learned policies;

• it provides a number of illustrative examples of tactical
insights about teams in the English Premier League.

2 Preliminaries
We provide some background on Markov models, their appli-
cation to soccer, and probabilistic model checking.

2.1 Markov Models
A Markov model describes a probabilistic process for transi-
tioning between various states in a system. A Markov Re-
ward Process (MRP) is a Markov model where transitions
may have an associated reward or cost. More formally, an
MRP is a tuple 〈S, P,R, γ〉 where S is the set of states,
P : S ×S → [0, 1] is the transition function, R : S ×S → R
is a reward function associated with every transition and
γ ∈ [0, 1] is a discount factor.

A Markov Decision Process (MDP) [Bellman, 1957;
Howard, 1960] extends an MRP to allow transitions between
states to depend on the action taken in a state. Formally, an
MDP is a tuple 〈S,A, P,R, γ〉 where S is the set of states,A
is the set of actions, P : S × A × S → [0, 1] is the transi-
tion function, R : S × A × S → R is the reward function,
and γ ∈ [0, 1] is a discount factor. For an MDP, a policy
π : S → dist(A) can be defined which specifies the proba-
bility distribution over actions given a certain state. Together
with the MDP, it defines the behavior of an agent.

2.2 Markov Models for Soccer
In soccer, Markov models have most commonly been used
to assign a value to each on-the-ball action a player per-
forms during a match, which is a key soccer analytics
task [Decroos et al., 2019; Liu et al., 2020; Singh, 2019;
Van Roy et al., 2020]. For this, an MRP is typically
used to model the in-game behavior of teams [Rudd, 2011;
Singh, 2019]. These approaches divide a soccer match into
possessions, where each possession is a sequence of consec-
utive on-the-ball actions carried out by the same team. Each
action transitions the game from one state to another in the
MRP. Players perform actions with the intention of arriving at
game states where they have a higher chance of scoring. The
players perform actions until one of two absorbing states is
reached: (i) a goal is scored and they receive a reward of 1 or
(ii) the possession ends (e.g., a turnover occurs, a shot is taken

Time Action Start End Result Player Team

20m49s pass (57.4, 49.1) (45.9, 49.1) success İ. Gündoğan Manchester City

20m49s dribble (45.9, 49.1) (40.6, 43.0) success K. De Bruyne Manchester City

20m51s pass (40.6, 43.0) (31.8, 47.3) fail K. De Bruyne Manchester City

20m51s interception (31.8, 47.3) (31.8, 47.3) success D. Lovren Liverpool

Figure 1: Four actions in event stream format recorded from Manch-
ester City versus Liverpool on 14/1/2018.

and missed, etc.) and they receive a reward of 0. The value of
a non-absorbing state s is then the probability of eventually
scoring from s, which can be obtained using the standard dy-
namic programming approach. The values of non-absorbing
states are then used to value all on-the-ball actions.

The probabilities in the model are learned from historical
event stream data, which is collected by human annotators.
This type of data describes all on-the-ball actions during a
soccer game. For each on-the-ball action, a number of at-
tributes are recorded such as the type of the action (e.g., pass,
dribble, shot), the start and end locations of the action, a
timestamp, the player who performed the action, etc. Ad-
ditionally, it records if the action succeeded or failed. For
example, a pass is successful if it reaches and is controlled by
a teammate. An example of an unsuccessful pass is one that
is intercepted by the opposing team. Figure 1 illustrates a part
of a possession sequence of Manchester City as it is recorded
in the event stream data format.

2.3 Probabilistic Model Checking
Probabilistic model checkers (e.g., PRISM [Kwiatkowska et
al., 2011] and STORM [Hensel et al., 2020]) verify whether
a probabilistic system satisfies a specific property. A property
describes a set of desired system behavior over time, and is
specified by a temporal logic formula. As both the system
and the property are mathematically formulated, probabilistic
verification can provide rigorous, quantitative guarantees.

In this paper, we focus on the reachability related proper-
ties that are supported in the PRISM model checker to rea-
son about how an opponent reaches a dangerous situation.
Specifically, we use the probabilistic reachability property
in PCTL∗ (which subsumes probabilistic computational tree
logic, PCTL, and linear temporal logic, LTL) for MRPs. Such
properties evaluate to either true or false in a state, and are
constructed using the classical logical operators (∧, ∨, ¬), the
temporal components α U β (α holds until β holds), α U≤k β
where k is a positive integer (α holds until β holds and β
will hold within k steps), X α (α holds in the next step), and
P./p[α] where ./∈ {<,>,≤,≥} (α holds with a probability
./ p). Additionally, the commonly used temporal component
F α (α will eventually hold) can be defined by the until oper-
ator: F α ≡ true U α. We will specifically look at quantita-
tive properties of the form P=?[α] which query the probability
that α holds. This means that a quantitative property evalu-
ates to a real number in [0,1].

In soccer, a possession sequence can start anywhere on the
field. Consequently, when mapping locations on the field to
states in the MRP, a property can be evaluated for any initial
location or state. We will use Pf=?[prop] to indicate that a
property prop is evaluated for a state f . This then returns the
probability that prop holds in f .



Figure 2: The gray lines denote the field states used in the MDP. A
team attacks from left to right. The partitioning is more fine-grained
near the opponent’s goal and more coarse-grained in defensive half
of the pitch. The colored regions denote zones used in the verifi-
cation queries: yellow denotes the area where most shots are taken
from, gray denotes the final third entry region, and dark blue denotes
the middle third of the pitch.

3 MDP for Soccer
Our goal is to design a discrete soccer MDP for analyzing
and verifying aspects of a team’s tactical or goal-directed
behavior. Most existing Markov models for soccer are
MRPs [Rudd, 2011; Singh, 2019] that consider only a proba-
bility distribution over two actions: move or shoot. However,
this is too limiting from a tactical perspective. We propose a
soccer MDP that generalizes a soccer MRP with the follow-
ing actions: shoot and move to with an intended destination.
This allows explicitly reasoning about a team’s actions, pol-
icy, and tactical behavior in various situations. Formally, the
soccer MDP is a tuple 〈S,A, P,R, γ〉 where S, A, P and R
are defined as follows, and γ is a discount factor.

S = FS ∪ E where FS is the set of 89 field states shown
in Figure 2 and E = {lp, ng, gs} denotes the set of ab-
sorbing states or end states, where lp signifies loss of
possession (i.e., a failed move), ng a failed shot (i.e.,
no goal), and gs a successful shot (i.e., the goal state).
We deviate from the use of a uniform grid because our
expanded action set creates issues of data sparsity. The
analysis needs to occur on the team level because each
team employs different tactical styles and there is limited
data per team.1 Our partitioning of the field states uses
a fine-grained partitioning where chances of scoring are
higher (i.e., in front of the opponent’s goal), and a more
coarse-grained partitioning where goal scoring chances
are lower (i.e., on a team’s own half). This ensures suffi-
cient data in each state while being fine-grained enough
to capture important differences between locations.

A = {move to(f) | f ∈ FS} ∪ {shoot} is the set of ac-
tions that allow for where to move the ball to.

P : S ×A× S → [0, 1] is the transition function and is de-
fined for both the absorbing states, E , and the field states,

1Top flight teams play between 34 and 38 league games in a sea-
son and perform between 500 and 2000 actions per game. Data more
than a season old may not be relevant: playing styles vary over time
due to changes in playing and management personnel.

FS . States E are absorbing, and so the set of possible
actions for such states is empty. For field states, the tran-
sition probabilities are defined as follows:

• P (f,move to(f ′), f ′) denotes the probability of
successfully moving to f ′ from f ; if the
move fails, the result is a loss of posses-
sion (lp), thus P (f,move to(f ′), lp) = 1 −
P (f,move to(f ′), f ′);

• P (f, shoot, gs) denotes the probability of scoring
a goal from f if the shoot action has been selected;
if the shot fails to reach the goal, the result is ng,
thus P (f, shoot, ng) = 1− P (f, shoot, gs);

• P (f, a, f ′) = 0 in all other cases.

R : S ×A× S → R is the reward function. The reward is 1
only when R(f, shoot, gs) = 1 (with f ∈ FS), and 0
otherwise.

The long-term value of a state s ∈ S in this MDP is then
given by the following value function [Bellman, 1966]:

Vπ(s)=
∑
a∈A

π(a|s)
∑
s′∈S

P (s, a, s′)(R(s, a, s′)+γVπ(s
′))

with π the policy to be followed. A policy is defined as the
probability distribution over actions for each possible state:

π(a|s) = Pr[A = a|S = s]

We will write V (s) instead of Vπ(s) when reasoning about an
MRP whose policy π is fixed.

A team’s policy and transition model can typically be
learned from historical data by estimating all probabilities
with simple counts. However, in this soccer MDP, this is
complicated by the chosen action space. Calculating the num-
ber of times an action intended to move the ball from state f
to f ′ requires knowing both the successful and unsuccess-
ful move actions from state f to f ′. However, for unsuc-
cessful actions, the intended end location is unknown. Thus,
in order to estimate the probabilities, one must first identify
the intended end locations of failed movement actions (i.e.,
dribbles, passes, crosses). We solve this problem by using a
gradient boosted trees ensemble to predict the intended end
location of actions based on several characteristics of the ac-
tions and what happened before those actions. Afterwards,
the team-specific policy and transition model can be obtained
in the standard way by counting the occurrences of actions in
each state.

4 Reasoning about Soccer MDPs
To reason about a team’s goal-directed behavior, we first
apply the above mentioned methodology to learn a team-
specific policy and transition model of the underlying MDP.
We use real-world event stream data from the 2017/18 and
2018/19 English Premier League (EPL) seasons, provided by
StatsBomb, and create a team-specific MDP for each of the 17
teams that played in both seasons. The policy together with
the MDP can be transformed into an MRP that probabilistic
model checkers such as PRISM can analyze. That is, we ana-
lyze the MRP obtained by fixing a team’s policy in the soccer



MDP. By checking different properties against the MRP, we
gain insight into how the team reacts to different situations.

In soccer, a team’s objective is to score goals, which can be
specified as a probabilistic reachability property. Checking
this property against the team’s MRP produces a value func-
tion that assigns to each location a probability of scoring, and
hence represents the team’s threat level. Formally,

V (f) = Pf=?[F gs] (1)

The threat level can, of course, be used by the opponent for
reasoning about the effect of possible defensive tactics which
is the focus of this paper. We now show how one can reason
about possible strategies for reducing the opponent’s scoring
opportunities by analyzing the opponent’s MRP (i.e., MDP
with fixed policy) and forcing them to avoid certain critical
locations on the field. Specifically, we look at the crucial lo-
cations for generating shots and buildup play, and end by as-
sessing how effective these defensive strategies remain after
the offensive team adapts to them.

4.1 Shot Suppression
Roughly 91% of shots arise from the yellow shaded region
(shot locs) in Figure 2. One approach to ultimately help re-
duce your chance of conceding, is to directly suppress the
shots your opponent takes from this favored region. However,
once the ball reaches this region, your opponent has already
created a dangerous situation. Therefore, another approach
is to limit the number of times your opponent reaches this
favored region to indirectly suppress shots. We now discuss
both approaches.

Indirect shot suppression
To reason about how likely your opponent is to reach
shot locs from a location f , consider the following query:

Pf=?[F shot locs] (2)
Suppose we could prevent an opponent from ever entering
f ′ ∈ non shot, where non shot = FS \ shot locs. We
can reason about the effect of this counterfactual policy that
forces the opposing team to avoid state f ′ (i.e., the opposing
team can never enter state f ′) on this probability using the
following query:

Pf=?[¬f ′ U shot locs] (3)

Both queries can be combined to reason about the effect of
avoiding f ′ on ever reaching shot locs from f . However, a
sequence can begin in any state. Therefore, to compute the
average reduction in your opponent’s probability of reaching
shot loc when forced to avoid f ′, we must sum over all loca-
tions in non shot in numerator and denominator:

1−
∑
f∈non shot Pf=?[¬f ′ U shot locs]∑
f∈non shot Pf=?[F shot locs]

(4)

By computing Formula 4 for all f ′, we can measure
each state’s percent decrease in the probability of reaching
shot locs when prevented from entering f ′. This gives an in-
dication of f ′’s importance for indirectly suppressing shots.

Figures 3a and 3b illustrate the effect of indirect shot sup-
pression for Manchester City and Burnley. Manchester City’s

most important states lie centrally with the flanks having a
smaller effect. An opponent that prevents them from entering
their most important state would decrease Manchester City’s
chance of reaching the common shooting locations by almost
20%. Tactically, Manchester City is a possession-based team
that gradually builds up their attack. Often, their top cre-
ator is midfielder Kevin De Bruyne, who tends to operate
on the center-left, and is known for his well-timed through
balls. For Burnley, their most important states lie centrally,
just outside the shooting locations, and on the right side of the
penalty box. Burnley is known for their frequently crossing
the ball into the penalty box and also have one of the better
cross accuracy percentages of teams in the EPL. Preventing
them from reaching their top location decreases their chance
of reaching the shooting locations by just over 9%.

Direct shot suppression
Besides limiting a team’s chance of reaching locations from
which they shoot, reducing the number of shots your oppo-
nent takes also helps reduce your chance of conceding. To
reason about how a team generates shots, consider the query:

Pf=?[F (shot locs U (gs ∨ ng))] (5)

which gives the probability of a sequence starting in f even-
tually reaching a state in shot locs after which it eventually
reaches either gs or ng. That is, it computes the unrestricted
probability of a sequence starting in f resulting in a shot from
shot locs. We can also reason about the effect of forcing the
opposing team to avoid state f ′ on the probability of shooting
using the following query:

Pf=?[¬f ′ U (shot locs U (gs ∨ ng))] (6)

By combining these two queries, we can compute the percent
decrease in your opponent’s probability of shooting if you can
force them to avoid entering location f ′:

1−
∑
f∈non shot Pf=?[¬f ′ U (shot locs U (gs ∨ ng))]∑
f∈non shot Pf=?[F (shot locs U (gs ∨ ng))]

(7)

By computing this for all f ′, we can measure each state’s
importance for directly suppressing shots.

Figures 3c and 3d illustrate the effect of direct shot sup-
pression for Manchester City and Burnley. Again, Manch-
ester City’s most important states lie centrally and Burnley’s
most important states tend to lie more to the right side of
the penalty box. An opponent that prevents Manchester City
(Burnley) from entering their most important state would de-
crease Manchester City’s (Burnley’s) chance of shooting by
almost 10% (4%).

4.2 Movement Suppression
The final third entry and middle third regions (resp. gray and
dark blue regions in Figure 2) are critical for building up an
attack. The following query reasons about reducing the op-
ponent’s chance of scoring in these states (reg), and thus re-
ducing their threat during buildup. Specifically, for a state
f ∈ reg, it queries a set of states area ⊆ FS \ reg where
a team should prevent its opponent from entering in order to



(a) Indirect (MC) (b) Indirect (B) (c) Direct (MC) (d) Direct (B)

Figure 3: The percent decrease in reaching ((a) and (b)) and shooting from ((c) and (d)) the common shot locations (in gray) for Manchester
City (MC) and Burnley (B). Yellow shading indicates states with a larger decrease, whereas dark blue shading indicates a smaller decrease.
The three states with the largest decrease are labeled in each figure. Manchester City experiences the biggest decreases in the (deep) central
areas with less impact on the flanks. In contrast, Burnley experiences large decreases in the central areas near the box and on the right flank.

decrease the opponent’s chance of scoring by at least x per-
centage points.

∀f ∈ reg : (Pf=?[F gs]− Pf=?[¬area U gs]) ≥ x (8)

The first Pf=? is simply the chance of scoring in state f (i.e.,
Equation 1) whereas the second Pf=? is the chance of scor-
ing while avoiding area. Reasoning about which subsets of
the states would form good candidate areas can be addressed
using the query:

area = {f ′′ ∈ FS \ reg | Pf ′′=?[F f
′] ≥ b} (9)

This query forms a cluster of states around a state f ′ ∈ FS \
reg by finding all other states f ′′ such that the probability of
reaching f ′ when starting from f ′′ is greater than b.

Figure 4 shows the results for Manchester City and Liver-
pool. To reduce Manchester City’s chance of scoring from
each of the final third entry states by at least 10%, the cru-
cial areas to avoid lie around the center and left side of the
field which is where creators like Kevin De Bruyne, Leroy
Sané and Raheem Sterling operate the most. Decreasing their
chance of scoring by at least 1% in each state in the mid-
dle third of the field can be done by forcing them to avoid
the center of their defensive third. To reduce Liverpool’s
chance of scoring from each of the final third entry states by
at least 10%, the crucial areas to avoid are a mirrored version
of those of Manchester City. Specifically, the middle and
right side of the field should be avoided, which are exactly
those locations where Liverpool’s attacking wing-back Trent
Alexander-Arnold and “Player of the Season 2017/2018”
Mohamed Salah operate. Decreasing their chance of scor-
ing by at least 1% in each state in the middle third of the field
can be done in the same way as for Manchester City, and thus
by forcing them to avoid the center of their defensive third.

4.3 Evaluating the Effect of Adapting the Policy
Until now, we have explored the effect of forcing a team to
avoid certain areas on its chance of scoring. In practice, if an
opponent enacts such a strategy, a team will eventually react
and adapt their old policy π towards a new one π′.

A simple new policy π′ will stop trying to reach locations
in area, so π′(move to(f ′)|f) = 0 for all f ′ ∈ area and the
lost probability mass will be redistributed over all other states
f ′′ ∈ FS \ area as follows:

π′(move to(f ′′)|f) = π(move to(f ′′)|f)
1−

∑
f ′∈area π(move to(f

′)|f)
(10)

By fixing the new policy π′ in the team’s MDP, we can rea-
son about the effect on the chances of scoring while adapting
to being forced to avoid area as:

1−
∑
f∈FS Vπ′(f)∑
f∈FS Vπ(f)

(11)

We illustrate the effect of Manchester City and Liverpool
adapting their policies to an opponent’s strategy. Forcing
Manchester City to avoid the blue area in Figure 4a will de-
crease their chance of scoring by 16.9%. However, if they
adjust their policy, the decrease is reduced to 3.9%. For Liv-
erpool, forcing them to avoid the blue area in Figure 4e will
decrease their chance of scoring by 12.3%. When they adjust
their policy, this decrease is reduced to 4%. While the de-
crease is less impressive in the latter case for both teams, this
still represents a reasonable reduction, certainly given that
adapting one’s strategy is hard.

5 Related Work
While Markov models have many applications in sports, the
most prominent use is to objectively quantify a player’s con-
tributions during a match. The intuition is that a Markov
model enables assessing how much a player’s action increases
her team’s chance of scoring in the near future. Such models
have begun to have a significant impact in professional soccer,
where clubs (e.g., Liverpool)2 and companies are employing
them to help in areas such as player acquisition.

Using these models for tactical advice has received less
attention. Some approaches have applied MRPs to analyze

2https://freakonomics.com/podcast/london-live/



(a) Final third entry: area 1 (MC) (b) Final third entry: area 2 (MC) (c) Middle third: area 1 (MC) (d) Middle third: area 2 (MC)

(e) Final third entry: area 1 (L) (f) Final third entry: area 2 (L) (g) Middle third: area 1 (L) (h) Middle third: area 2 (L)

Figure 4: Illustrates for Manchester City (top row) and Liverpool (bottom row) four areas (blue) to prevent them from reaching in order to
decrease their chances of scoring in each final third entry state by at least 10% and in each middle third state by at least 1%.

set-pieces such as corners, free-kicks and throw-ins [Rudd,
2011], to identify where teams create value from by valu-
ing their actions [Singh, 2019], and to determine the op-
timal times of substitutions and tactical changes [Hirotsu
and Wright, 2002]. Other works use the optimal policy of
an MDP and/or estimate the effect of changes to the pol-
icy to provide tactical advice [Sandholtz and Bornn, 2018;
Sandholtz and Bornn, 2020; Van Roy et al., 2021; Wang et
al., 2018]. Our proposed MDP uses the same large action
space for soccer as discussed in Van Roy et al. [2021]. In
contrast, our methods of providing tactical advice differ from
the above mentioned approaches. Our work takes a defen-
sive perspective to providing tactical advice, and aims to use
probabilistic model checking to assess the effect of employ-
ing different defensive strategies.

In contrast to real-life soccer, MDP’s have been exten-
sively used in research on strategic reasoning and planning
in (simulated) robot soccer. For example, an approach for
providing coaching advice has been developed by Riley and
Veloso [2004] and uses Q-learning to reason about a learned
MDP. Additionally, the works of Ahmadi and Stone [2008]
and Bai et al. [2012] investigated different automated action
planning strategies for in-game decision making. Such au-
tomated planning strategies cannot immediately be used in
real-life soccer as it is a highly unpredictable game. How-
ever, instead of finding the optimal plan, we aim to identify
dangerous situations and, based on this, evaluate the effects of
specific forced changes to a policy of a specific team. The re-
sulting insights can immediately be used in the more general
tactical planning by coaches.

Finally, applying verification techniques to sports models
has not been extensively explored. Dong et al. [2015] have
applied probabilistic model checking to a tennis MDP to pre-

dict the win probability and identify a player’s best action
to improve. Van Roy et al. [2021] have applied probabilis-
tic model checking to a soccer MDP to identify the best ac-
tion regarding long-distance shooting. In contrast, our work
is to the best of our knowledge the first to apply probabilistic
model checking to inform a defensive game plan in soccer.

6 Conclusion
We have shown how machine learning techniques can learn a
model that can be used to reason about goal-directed poli-
cies in the complex dynamic environment of professional
soccer. We believe that our approach is also applicable to
other environments. While there are no strong guarantees
about the model’s correctness as would be required in a ver-
ification context, it clearly supports reasoning about strate-
gies and policies with respect to safety (i.e. reducing the
chance of conceding). Furthermore, visualizing the results of
the queries can help human soccer experts better understand
the effects of potential strategies, which in turn contributes
to trustworthy AI. From an application perspective, the pro-
posed approaches can form a basis for future tactical analysis
in sports.
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