
Machine Learning and Configurable Systems:
A Gentle Introduction

Juliana Alves Pereira1, Hugo Martin2, Paul Temple3, Mathieu Acher2
1PUC-Rio, Rio de Janeiro, Brazil, 2Univ Rennes, IRISA, Inria, France; 3University of Namur, Belgium

jpereira@inf.puc-rio.br,hugo.martin@irisa.fr,paul.temple@unamur.be,mathieu.acher@irisa.fr

ABSTRACT
The goal of this tutorial is to give a gentle introduction to how
machine learning can be used to support software product line con-
�guration. This is our second practical tutorial in this trending �eld.
The tutorial is based on a systematic literature review and includes
practical tasks (specialization, performance and bug prediction)
on real-world systems (Linux, VaryLaTeX, x264). The material is
designed for academics and practitioners with basic knowledge in
software product lines and machine learning.

CCS CONCEPTS
• Software and its engineering → Software product lines;

KEYWORDS
Software Product Lines, Machine Learning, Con�gurable Systems
ACM Reference format:
Juliana Alves Pereira1, Hugo Martin2, Paul Temple3, Mathieu Acher2. 2020.
Machine Learning and Con�gurable Systems: A Gentle Introduction. In
Proceedings of 24th ACM International Systems and Software Product Line
Conference, MONTREAL, QC, Canada, October 19–23, 2020 (SPLC ’20), 1 pages.
DOI: 10.1145/3382025.3414976

Motivation & Contents. Con�gurable software systems allow
stakeholders to derive product variants that meet their speci�c
functional and non-functional requirements. A straightforward
way to �nd a suitable con�guration is to measure the target (non-
functional) property of each individual product variant, and then e.g.
search for the con�guration with the best performance. In practice,
this process is usually unfeasible due to the combinatorial explo-
sion of possible variants and the long measurement time needed
to compute the non-functional property of a given con�guration.
Machine learning techniques play a central rule when it comes to
predicting the behavior of con�gurable systems and mastering its
complexity. In this tutorial, we rely on the pattern "sampling, mea-
suring, learning, validation" emerged in the software engineering
and machine learning literature [4]. The usual process is to sample
some con�gurations, execute and measure them, and learn out of
con�guration measurements. The hope is that the learning phase
generalizes well to the whole con�guration space.

We will demonstrate the use of di�erent sampling and learning
techniques and which applications they are more likely to be ap-
plied from pure prediction to automated specialization and program

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLC ’20, MONTREAL, QC, Canada
© 2020 Copyright held by the owner/author(s). 978-1-4503-7569-6/20/10. . . $15.00
DOI: 10.1145/3382025.3414976

understanding. The practical tasks will be conducted on three case
studies: Linux [1], VaryLaTeX [2] and x264 [3].

The tutorial is a half-day event structured as follows:
Part 1 (theoretical) – Motivation and a complete overview of
the progress made in this �eld. We will start with a motivation
session relying on the Linux kernel, a highly-con�gurable system
with an enormous space. With 15K+ options, it is impossible to
explore the whole con�guration space, hence the need to rely on
statistical machine learning approaches. Next, we will introduce a
catalog of "sampling, measurement, learning, validation" techniques
used in numerous recent works in the �eld [4]. We give concrete
examples to illustrate the advantages of di�erent techniques.
Part 2 (practical) – Specialization: the case of VaryLaTeX. In
this practical session, we exercise how con�gurable systems can
be specialized thanks to learning techniques used to automatically
mine constraints among options. We use an intuitive example: a
learning system, called VaryLaTeX [2], capable of generating LaTeX
paper variants that respect constraints (e.g., page limits). This part
aims to explain how to frame a specialization problem as a classi-
�cation problem and illustrate how to read and interpret decision
trees which are used to specialize con�gurable systems.
Part 3 (practical) – Performance and bug prediction: the case
of Linux and x264. We show how we can predict performance
properties (e.g., execution time and size) and bugs of unlabeled
con�gurations of x264 [3] and Linux [1]. With this part, attendees
will understand how to frame performance and bug prediction
problems as regression and classi�cation problems, respectively.
Part 4 (theoretical) – Conclusion. In this section, we will recap
all lessons learned, and point out limitations and open challenges
that need attention in future work (e.g. resources cost vs error cost).
Link to the material (including slides, data, procedures1):
https://github.com/VaryVary/ML-con�gurable-SPLCTutorial
Acknowledgements. VaryVary project grant ANR-17-CE25-0010-
01 and the CAPES grant 88887.473590/2020-00.

REFERENCES
[1] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Jean-Marc

Jézéquel, Djamel Khelladi, Luc Lesoil, and Olivier Barais. 2019. Learning Very
Large Con�guration Spaces: What Matters for Linux Kernel Sizes. (2019).

[2] Mathieu Acher, Paul Temple, Jean-Marc Jézéquel, José A. Galindo, Jabier Mar-
tinez, and Tew�k Ziadi. 2018. VaryLATEX: Learning Paper Variants That Meet
Constraints. In VAMOS. 83–88.

[3] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel.
2020. Sampling E�ect on Performance Prediction of Con�gurable Systems: A
Case Study. In ACM/SPEC ICPE. 277–288.

[4] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2019. Learning Software Con�guration
Spaces: A Systematic Literature Review. (2019).

1Pre-requisite: Python, scikit-learn, and Jupyter notebooks must be installed.

https://github.com/VaryVary/ML-configurable-SPLCTutorial

	Abstract
	References

