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Abstract
In this paper, we consider algorithms to decide the existence
of strategies in MDPs for Boolean combinations of objectives.
These objectives are omega-regular properties that need to
be enforced either surely, almost surely, existentially, or with
non-zero probability. In this setting, relevant strategies are
randomized infinite memory strategies: both infinite mem-
ory and randomization may be needed to play optimally.
We provide algorithms to solve the general case of Boolean
combinations and we also investigate relevant subcases. We
further report on complexity bounds for these problems.

CCS Concepts: •Mathematics of computing→Markov
processes; • Theory of computation → Logic.
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1 Introduction
Recently, there have been several works on how to mix the
semantics of games and Markov decision processes [1, 5, 11,
12, 16]. This setting provides means to model the interaction
between a system and its environment that is uncontrollable
but obeys stochastic dynamics. The setting is then used to
reason on strategies of the system that ensure for example
some properties with certainty and others with high proba-

bility.
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Here, we extend this line of work by studying a general
setting where objectives for the system are Boolean combi-
nations of atoms. These atoms are omega-regular properties,
expressed as parity conditions, that need to be ensured ei-
ther surely (A), almost surely (AS), existentially (E), or with
non-zero probability (NZ). Sure (A) and existential (E) atoms
are non-probabilistic while almost sure (AS) and non-zero
(NZ) atoms are probabilistic. The coexistence of atoms of both
types that need to be satisfied by a unique strategy makes
this problem out of reach of classical techniques used to
solve MDPs with CTL objectives or with PCTL objectives for
example.

Infinite memory and randomization. In some previ-
ous works on models that mix games and MDPs [1, 5, 11, 12],
infinite memory strategies are necessary to play optimally;
randomization is not necessary. In [17], combination of par-
ity conditions are studied. In that paper, randomization is
necessary, but not infinite memory. In the setting that is con-
sidered in the current paper, relevant strategies for the sys-
tems are randomized infinite memory strategies: both infinite
memory and randomization may be needed to play optimally.
This implies that the techniques used here are more com-
plex than for the previous works. Note that randomization
is already necessary when considering conjunctions of two
NZ atoms. The example we give above in Figure 1 is encom-
passed by the formalism of [17], and shows why we need to
add randomization when compared to the work in [5]. In the
MDP of Figure 1, there does not exist a deterministic choice
from state s0 between action a and action b that ensures
NZ(p1) ∧ NZ(p2), while a randomized strategy can enforce
this objective by taking a with probability α (0 < α < 1) and
taking b with probability 1 − α .

Main contributions. Our main contributions are sum-
marized in Table 1. We provide a ΣP

2 algorithm to decide
the existence of a strategy to enforce a Boolean combina-
tion of atomic objectives. We also show that this problem
is both NP and coNP hard. Then we provide additional re-
sults for relevant subclasses of Boolean combinations. For
the conjunctive case, we prove the existence of a polynomial
algorithm that uses anNP oracle while the problem is shown
to be coNP hard. For conjunctions that contain only one sure
atom (1A) and a number of other atoms, the complexity goes
down toNP∩ coNP and it is at least as hard as solving parity
games. The complexity of this algorithm is dominated by
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Figure 1. The MDP depicted here has 3 states and two parity
functions p1 and p2. The numbers assigned by the parity
functions to the states are depicted by the integers inside the
states. A parity condition is enforced if the maximum value
of states that appear infinitely often is even. By taking a from
s0, state s1 is reached with probability one, and by taking b,
s2 is reached with probability one. Clearly on this example,
a randomized strategy is needed to win for NZ(p1) ∧ NZ(p2)

from state s0.

Hardness Membership

∧(AS, NZ, E) P
P

(Thm. 7.2)

∧(1A, AS, NZ, E) parity
NP ∩ coNP
(Thm. 7.4)

∧(A, AS, NZ, E) coNP
PNP(= ∆P

2 )

(Thm. 7.1)

B(A, AS, NZ, E)
NP and coNP
(Thm. 7.6)

NPNP(= ΣP
2 )

(Thm. 7.5)
Table 1. Table of the main complexity results.

the complexity of solving parity games. A polynomial time
solution to parity games would lead to a polynomial time
solution for our problem. Also the recent quasi-polynomial
time solutions for parity games, see e.g. [13], can be used
to obtain a quasi-polynomial time solution to our problem.
Finally, for conjunctions that do not contain sure atoms, the
problem can be solved in polynomial time.

Related works. Logical formalisms to express properties
of transition systems and Markov decision processes were
plentifully studied in the literature. But most of the results
in the literature only consider either logics based on non-

probabilistic atoms, e.g. CTL, or logics based on probabilistic

atoms only, e.g. PCTL. The logic PCTL is used to express
constraints on the probability of events that are temporal
properties of paths. In [10], the strategy synthesis problem
for MDPs with PCTL objectives is studied. The full logic,
i.e. with arbitrary probabilistic thresholds, is undecidable
but the qualitative fragment of the logic (thresholds 0 and
1, corresponding to NZ and AS in our setting) is decidable in
EXPTIME. This high complexity is due to the succinctness of
PCTL. As PCTL cannot express our non-probabilistic atoms,
the two formalisms have incomparable expressive power.
Settings that mix both non-probabilistic properties, such as
A or E, with probabilistic ones such as AS or NZ, are more
recent. We make now a more detailed review of the recent
relevant works in that direction.

In [11, 12], MDPs with mean-payoff and shortest path
objectives are considered. This work was, to the best of
our knowledge, the first work to consider the synthesis of
strategies that optimize an expectation (a probabilistic prop-
erty) while satisfying a long-run worst-case objective (a non-
probability objective). Similarly, the authors of [1] consider
the synthesis of strategies that ensure a parity condition
surely and at the same time an ϵ-optimal expected mean-
payoff. Those works introduce refinements of the notion of
end-components that we need to further refine here.
The authors of [19] study an extension of MSO, called

MSO+∇ which uses a probabilistic second order quantifier.
The logic MSO+∇ is expressive enough to encode the prob-
lem we study here, but this logic has been proved to be un-
decidable [3, 8]. In [6, 7], a fragment of MSO+∇, called Thin
MSO has been introduced. The logic Thin MSO is expressive
enough to encode the model-checking problem of the quali-
tative fragment CTL∗ + PCTL∗ (union of CTL∗ and PCTL∗)
over Markov chains. Their algorithm has non-elementary
complexity. The algorithm was recently improved in [18]
where a model-checking algorithm with 3NEXPTIME∩ co−
3NEXPTIME complexity is proposed. The works in [6, 18] do
not consider the richer model of Markov decision processes
as we do here.
In [14], the authors study qualitative tree automata, that

is automata with a probabilistic acceptance condition. The
non-emptiness problem of nondeterministic tree automata
with such acceptance condition has been proved decidable,
but the problem has been proved undecidable for universal
tree automata with such acceptance condition [3]. There
is a deep connection between tree automata and Markov
Decision Processes, as the existence of a strategy on an MDP
corresponds to deciding the non-emptiness of a qualitative
tree automaton with unary alphabet.
In [7, 20], the authors study subzero automata: a class

of tree automata with an acceptance condition that mixes
the classical Rabin acceptance condition with probabilistic
constraints. The problem of determining if a subzero au-
tomaton accepts some regular tree is decidable. This class
of automata can in turn be used to solve synthesis problem
for finite-memory strategies (that are equivalent to regular
trees) that enforce a first parity condition p1 surely (A) and a
second parity condition p2 almost-surely (AS). Our work con-
sider more general properties (both E and NZ in addition to A
and AS, and their Boolean combinations) and more general
strategies: randomized infinite memory strategies, and not
only finite memory deterministic strategies (regular trees).

In this paper, we provide non-trivial extensions of results
in [5] where only the case of one sure parity objective (1A)
and one almost-sure parity objective (1AS) is considered. An
NP ∩ coNP algorithm is provided in [5] for this special case.
In the current paper, in addition to a ΣP

2 algorithm for the
general case B(A, AS, NZ, E), we also provide an algorithm
that solves conjunctions of one sure parity objective (1A) and
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any number of almost-sure (AS), existential (E), and non-zero
probability (NP) parity objectives with the same worst-case
complexity as that of [5]. Algorithms in [5] heavily rely on
notions of very good end-components (VGEC) and ultra good
end-components (UGEC). Here, we need generalization of
VGEC and UGEC, and additional technical results to build
algorithms for our more general setting.

Finally, the authors of [16] consider the synthesis of finite-
memory strategies for MDPs with a sure parity (S) and an
almost-sure parity (AS) objectives. The restriction to finite
memory strategies leads to simpler algorithms but the com-
plexity is similar, i.e. NP ∩ coNP. The authors of [16] also
consider the case of 2 1

2 -player games. In that setting the
problem is coNP-complete.
Structure of the paper. In Section 2, we introduce neces-

sary preliminaries about MDPs, and we formally define the
class of properties that we consider, i.e. Boolean combina-
tions of A, AS, E, and NZ atoms. In Sections 3, 4 and 5, we study
notions of end-components that are the main technical in-
gredients of our algorithms. Section 6 introduces additional
techniques needed to handle E and NZ atoms. In Section 7,
we study the complexity of algorithms for the general case,
and several relevant fragments.

Full proofs are provided in [4].

2 Preliminaries
For k ∈ N, we denote by [k]0 and [k] the set of natural num-
bers {0, . . . ,k} and {1, . . . ,k} respectively. Given a finite set
A, a (rational) probability distribution over A is a function
Pr : A → [0, 1] ∩ Q such that

∑
a∈A Pr(a) = 1. We denote

the set of probability distributions on A by D(A). The sup-
port of the probability distribution Pr on A is Supp(Pr) =
{a ∈ A | Pr(a) > 0}.

Markov chain. We denote by N the set {1, 2, . . .}, and
by N0 the set N ∪ {0}. A Markov chain (MC, for short) is a
tupleM = (S,E,Pr), where S is a set of states, E ⊆ S × S is
a set of edges (we assume in this paper that the set E(s) of
outgoing edges from s is nonempty and finite for all s ∈ S),
and Pr : S → D(E) assigns a probability distribution – on
the set E(s) of outgoing edges from s – to all states s ∈ S . In
the following, Pr(s, (s, s ′)) is denoted Pr(s, s ′), for all s ∈ S .
The Markov chain M is finite if S is finite.

For s ∈ S , the set of infinite paths in M starting from
s is PathsM(s) = {π = s0s1 . . . ∈ Sω | s0 = s,∀n ∈

N0, Pr(sn , sn+1) > 0}. The set of all infinite paths in M is
PathsM =

⋃
s ∈S Paths

M(s). For π = s0s1 . . . ∈ PathsM , we
denote by π (i, l) the sequence of l − i + 1 states (or l + 1
edges) si . . . si+l , and for simplicity, we denote π (i, 0) by
π (i). The infinite suffix of π starting in sn is denoted by
π (n,∞) ∈ PathsM . The set of finite paths starting from
a state s ∈ S is defined as FpathsM(s) = {π = s . . . s ′ ∈

S+ | ∃π̄ ∈ PathsM , ππ̄ ∈ PathsM(s)} and FpathsM =⋃
s ∈S Fpaths

M(s). For π = s . . . s ′, we denote by Last(π ),

the last state s ′ in π . As in [21], we extend the probabil-
ity distribution to the space of infinite paths by considering
cylinders defined by finite prefixes and using Carathéodory’s
extension theorem. We denote this probability distribution
over the set of infinite paths beginning from some initial
state s by Prs

M
. When s is clear from the context, we omit it

and only denote this distribution by PrM .

Markov decision process. A finite Markov decision pro-

cess (MDP, for short) is a tuple Γ = (S,E,Act ,Pr), where
S is a finite set of states, Act is a finite set of actions, and
E ⊆ S ×Act × S is a set of edges, and Pr : S ×Act → D(E) is
a partial function that assigns a probability distribution – on
the set E(s,a) of outgoing edges from s – to all states s ∈ S
if action a ∈ Act is taken from s . For all s ∈ S there exists
at least one a ∈ Act such that E(s,a) is defined. Given s ∈ S
and a ∈ Act , we define Post(s,a) = {s ′ ∈ S | Pr(s,a, s ′) > 0}.
Then, for all state s ∈ S , we denote by Act(s) the set of ac-
tions {a ∈ Act | Post(s,a) , ∅}. We assume that, for all
s ∈ S , we have Act(s) , ∅. Given an MDP Γ = (S,E,Act ,Pr),
and a set of states C ⊆ S , we define the restriction of Γ
to C , denoted Γ⇂ C , as the MDP (C,E ′,Act ,Pr′) where E ′ =

{(s,a, s ′) | s, s ′ ∈ C, a ∈ Act ,Post(s,a) ⊆ C, and (s,a, s ′) ∈
E}, and Pr′ is a partial function defined as Pr′(s,a) = Pr(s,a)
if (s,a, s ′) ∈ E ′ for a ∈ Act , and s, s ′ ∈ C , and is undefined
otherwise.
A strategy in Γ is a function σ : S+ → D(Act) such that

for all s0 . . . sn ∈ S+, we have Supp(σ (s0 . . . sn)) ⊆ Act(sn).
A strategy σ can be encoded by a transition system T =
(Q, S,act ,δ , ι) where Q is a (possibly infinite) set of states,
called modes, act : Q × S → D(Act) selects a distribution
on actions such that, for all q ∈ Q and s ∈ S , we have,
act(q, s) ∈ D(Act(s)). The function δ : Q × S → Q is a mode
update function and ι : S → Q selects an initial mode for
each state s ∈ S . If the current state is s ∈ S , and the current
mode is q ∈ Q , then the strategy chooses the distribution
act(q, s), and the next state s ′ is chosen according to the distri-
bution act(q, s). Formally, (Q, S,act ,δ , ι) defines the strategy
σ such that σ (ρ · s) = act(δ ∗(ι(ρ(0)), ρ), s) for all ρ ∈ S∗,
and s ∈ S , where δ ∗ extends δ to sequence of states starting
from ι as expected, i.e., δ ∗(ι(ρ(0)), ρ · s) = δ (δ ∗(ι(ρ(0)), ρ), s),
and δ ∗(ι(ρ(0)), ε) = ι(ρ(0)). We denote by Tσ a transition
system with minimal number of modes that corresponds to
a strategy σ . A strategy is said to be memoryless if there ex-
ists a transition system encoding the strategy with |Q | = 1,
that is, the choice of action only depends on the current
state. A memoryless strategy can be seen as a function
σ : S → D(Act). Formally, a strategy σ is memoryless if
for all finite sequences of states ρ1 and ρ2 in S+ such that
Last(ρ1) = Last(ρ2), we have σ (ρ1) = σ (ρ2). A strategy is
called a finite memory strategy if there exists a transition
system encoding the strategy in whichQ is finite. A strategy
is deterministic if σ : S+ → Act . For deterministic strategies,
we have act : Q × S → Act such that for all q ∈ Q and s ∈ S ,
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we have act(q, s) ∈ Act(s). Note that the state space of Γ[σ ]
is Q × S . For a sequence π of states in Γ[σ ], we denote by
projS (π ) the corresponding sequence of states in the MDP Γ.
Once we fix a strategy σ encoded by the transition system
(Q, S,act ,δ , ι) in an MDP Γ = (S,E,Act ,Pr), we obtain an
MC Γ[σ ] = (S ′,E ′,Pr′), where S ′ = Q × S is the set of states,
E ′ = {(q×s)×(q′×s ′) | q,q′ ∈ Q, s, s ′ ∈ S,δ (q, s) = q′, ∃a ∈

Act , a ∈ Supp(act(q, s)) and (s,a, s ′) ∈ E} is the set of edges,
and for q,q′ ∈ Q, s, s ′ ∈ S we have the probability distribu-
tion Pr′(q, s)(q′, s ′) = Σa∈Supp(act (q,s))act(q, s)(a) · Pr(s,a, s ′)
if q′ = δ (q, s) and is not defined otherwise. In the sequel, by
abuse of notation, we write the projection onto the second
component, that is s instead of (q, s), for a state of this MC,
unless specifically stated.

One and two-player games. For a given objective, an
MDP Γ = (S,E,Act ,Pr) can also be considered to have the
semantics of a zero-sum two-player turn-based game where
the game is played for infinitely many rounds and the exact
probabilities are not important (this is the case when we will
consider A and E atoms). The first round starts from a desig-
nated initial state sinit ∈ S . In each round, Player 1 chooses an
actiona ∈ Act(s) from a state s while Player 2 that is adversar-
ial resolves the nondeterminism by choosing a state s ′ such
that Pr(s,a, s ′) > 0. We denote by GΓ = (S,E,Act) the two-
player game that is obtained from an MDP Γ = (S,E,Act ,Pr).
When the players resolve the nondeterminism co-operatively,
we have a one-player game, which is the same as a nonde-
terministic automaton. Equivalently, in a one-player game,
Player 1 chooses both action a as well as the state s ′.
Given a target set T , we define the attractor of T , de-

noted Attr1(T ) as the set of states from which there exists
a strategy for Player 1 to reach T with certainty. This cor-
responds to reachability in a classical “and-or" graph. For
a two-player game, given T , an algorithm to obtain its at-
tractor computes a sequence of sets of states (Attrn1 (T ))n≥0
defined as follows: (i) Attr0

1(T ) = T ; and (ii) for all n ≥ 0:
Attrn+1

1 (T ) = Attrn1 (T ) ∪ {s ∈ S | ∃a ∈ Act , Post(s,a) ⊆

Attrn1 (T )}. Clearly Attrn+1
1 (T ) ⊇ Attrn1 (T ). If S is finite,

then there exists anm ∈ N0 such that Attrn1 (T ) = Attrm1 (T )
for all n ≥ m. The algorithm for the case of one-player
game only changes in the induction step where we have
for all n ≥ 0: Attrn+1

1 (T ) = Attrn1 (T ) ∪ {s ∈ S | ∃a ∈

Act , Post(s,a) ∩ Attrn1 (T ) , ∅}. The algorithm for the one-
player case corresponds to classical graph reachability.
We denote the size of an MCM, MDP Γ and two-player

game G by |M|, |Γ | and |G | respectively. For each case, the
size is the sum of the number of states, the number of edges,
and the size of the representation of the transition matrix,
that is, |S | + |E | + |Pr|.

Parity conditions and qualitative parity logic. Given
an MDP Γ, a parity condition is a function p: S → N0. Given
a path π ∈ Sω , the set inf(π ) = {s ∈ S | ∀i ≥ 0, ∃j ≥

i, such that π (j) = s} is the set of states visited infinitely
often on this path. A path satisfies a parity condition p if
max{p(s) | s ∈ inf(π )} is even. Given a parity condition p, its
dual is the condition p̄ : s 7→ 1 + p(s). We denote by parity
the set of parity conditions. A path satisfies p̄ iff it does not
satisfy p. We now define qualitative parity logic (QPL ) which
is defined by the following grammar.

atom = A(p) | E(p) | AS(p) | NZ(p) (p ∈ parity)

φ = atom | φ ∧ φ | φ ∨ φ | ¬φ

Given an MDP Γ = (S,E,Act ,Pr), a state s ∈ S , and a parity
condition p, for the atomic formulas, we say that s under
strategy σ

• surely satisfies p, denoted s,σ |=Γ A(p), iff
∀π ∈ PathsΓ

[σ ]

(s), we have that π satisfies p.
• almost-surely satisfies p, denoted s,σ |=Γ AS(p), iff
PrΓ[σ ] ({π ∈ PathsΓ

[σ ]

(s) : π satisfies p}) = 1.
• satisfies p with non-zero probability, denoted s,σ |=Γ

NZ(p), iff PrΓ[σ ] ({π ∈ PathsΓ
[σ ]

(s) : π satisfies p}) > 0.
• existentially satisfies p, denoted s,σ |=Γ E(p), iff ∃π ∈

PathsΓ
[σ ]

(s), such that π satisfies p.
Given two QPL formulas φ and ψ , and a strategy σ we

define the semantics of Boolean connectives as follows:
• s,σ |=Γ φ ∧ψ iff s,σ |=Γ φ and s,σ |=Γ ψ
• s,σ |=Γ φ ∨ψ iff s,σ |=Γ φ or s,σ |=Γ ψ
• s,σ |=Γ ¬A(p) iff s,σ |=Γ E(p̄)
• s,σ |=Γ ¬E(p) iff s,σ |=Γ A(p̄)
• s,σ |=Γ ¬AS(p) iff s,σ |=Γ NZ(p̄)
• s,σ |=Γ ¬NZ(p) iff s,σ |=Γ AS(p̄)
• s,σ |=Γ ¬(φ ∧ψ ) iff s,σ |=Γ ¬φ ∨ ¬ψ
• s,σ |=Γ ¬(φ ∨ψ ) iff s,σ |=Γ ¬φ ∧ ¬ψ

Given a formula φ, we will use s |=Γ φ to denote ∃σ :
s,σ |=Γ φ . Given a formula φ, let JφK def

= {s ∈ S | s |=Γ
φ}. We note that satisfying surely a parity condition is the
same as winning the parity objective in the two-player game
corresponding to the MDP Γ. Satisfying existentially is the
same as finding a satisfying path in the nondeterministic
automaton associated to this MDP.
Given an MDP Γ = (S,E,Act ,Pr), a state s ∈ S , and a

QPL formula φ, the QPL-synthesis problem is to find a strat-
egy σ such that s,σ |=Γ φ. The QPL-realizability problem is
to decide whether s |=Γ φ. In what follows, we focus on the
QPL-realizability problem, but the algorithms we provide
give all the elements necessary to build a winning strategy
when such a strategy exists, and so they can be easily ex-
tended to solve QPL-synthesis.

Remark 2.1. We define the negation of the formulas using

classical De Morgan’s laws. We note that the logic QPL is

closed under negation. It is also important to note that in this

semantics, s |=Γ ¬φ is not equivalent to s ⊭Γ φ. Indeed, s |=Γ
¬φ implies that there exists a strategy σ such that s,σ |=Γ ¬φ
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whereas s ⊭Γ φ implies that for all strategies σ , we have

s,σ |=Γ ¬φ.
Similarly, even though s |=Γ φ ∨ψ is equivalent to s |=Γ φ

or s |=Γ ψ , we note that s |=Γ φ ∧ψ is not the same as s |=Γ φ
and s |=Γ ψ . Also using De Morgan’s laws, the negation can

be applied only to the parity objectives to get their duals, for

example, ¬(A(p1)∧A(p2)) is the same as E(p̄1)∨E(p̄2). We can

indeed define a negation free normal form that can be obtained

by taking the DNF and pushing negations down to the atoms.

In the rest of the paper, we thus restrict our attention to the

subclass of the logic that is free of negation and disjunction.

Additional objectives. Wedefine the following additional
objectives, introduced for technical reasons, even though
they are not part of QPL1. A parity condition is called a
Büchi condition if it is defined as p: S → {1, 2}. A path
π ∈ Sω satisfies a conjunction of parity conditions

∧
x ∈X px

if for all x ∈ X we have max{px (s) | s ∈ inf(π )} is even.
It is not hard to see that conjunctions of parity conditions
can be expressed as Streett conditions . A path π satisfies a
reachability condition towards a set R ⊆ S , denoted ♢R, if
there exists i ∈ N0 such that π (i) ∈ R.
Given an MDP, we can define, in the same way as pre-

viously the sure, almost-sure, non-zero, and existential ob-
jectives for these conditions, as well as conjunctions and
disjunctions of these objectives.

End-components. An end-component (EC, for short)M =
(C,A) such that C ⊆ S , and A : C → 2Act is a sub-MDP of Γ
(for all s ∈ C, we have A(s) ⊆ Act(s), and for all a ∈ A(s), we
have Post(s,a) ⊆ C) that is strongly connected. We denote
by EC(Γ) the set of end-components of MDP Γ. By abuse of
notation, in the sequel, we often refer to a set C ⊆ S to be
an end-component when there exists a function A : C →

2Act such that (C,A) is an end-component. A maximal EC

(MEC, for short) is an EC that is not included in any other
EC. For every strategy in an MDP, the set of states seen
infinitely often during a path form an end-component with
probability 1. Formally:

Proposition 2.2 ([2]). Given an MDP Γ, for all strategies σ ,

for all states s , we have PrΓ[σ ] ({π ∈ PathsΓ
[σ ]

(s) | inf(π ) ∈
EC(Γ)}) = 1.

3 Type I end-components
In this section, we define Type I ECs that are a generalization
of super-good end components as defined in [1].
Lemma 3.5 is the main result of the section, where we

state that we can compute the set of maximal Type I ECs.
This will be used later, to compute the set of maximal ECs
of other kinds, namely Type II and Type III that are used in
Sections 4 and 5 to solve satisfiability of formulas of the
1Given an MDP Γ, we could have expressed these conditions using QPL,
but this would involve constructing a larger and more complex MDP from
the given MDP Γ.

form
∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ) and
∧
(A,AS) ∧ NZ(pnz )

respectively. Lemmas 3.2, 3.3 and 3.4 are technical lemmas
that are required in the proof of Lemma 3.5. The proof of
Lemma 3.2 uses the notion of Street-Büchi games.
Given two sets of parity conditions {pa | a ∈ A} and

{pas | as ∈ AS}, an end-componentC of Γ is Type I (A,AS)
if the following property holds:

• (I1) ∀ s ∈ C, s |=Γ⇂C
∧
a∈A

A(pa)∧
∧

as ∈AS

AS(♢Cmax
even(pas )),

where

Cmax
even(pas ) =

{
s ∈ C | (pas (s) is even) ∧

(∀ s ′ ∈ C,

pas (s
′) is odd =⇒ pas (s

′) < pas (s)
)}

contains the states with even priorities that are larger
than any odd priority in C (this set can be empty for
arbitrary ECs but needs to be non-empty for
Type I(A,AS) ECs);

We write Type I (A,AS) EC as Type I EC when the parity
sets are clear from the context. We introduce the following
notations: ECI(Γ,A,AS) is the set of all Type I (A,AS)
ECs, and TI,Γ,A,AS = ∪U ∈ECI(Γ,A,AS)U is the set of states
belonging to some Type I EC. Given an EC C , we say a state
s ∈ C is of Type I for C if C is Type I . In this paper, we only
consider Type I (A,AS) ECs where AS is either A or {a}.

Intuitively, within a Type I EC, there is a strategy to visit
all Cmax

even(pas ) for all as ∈ AS with probability 1 while guar-
anteeing A(pa) for all a ∈ A. We note that this property must
hold while staying inside the end-component C . This notion
strengthens the notion of super-good end-component (SGEC
in [1]), that are defined for some parity condition pa , and are
Type I ({a}, {a}) ECs. In the case of SGEC, it has been shown
in [1] that the existence of a strategy to enforce condition I1
in Γ can be reduced to checking the existence of a winning
strategy in a game, constructed in polynomial time from Γ,
with a conjunction of one parity objective and one Büchi
objective. The existence of a winning strategy in such a game
is in NP∩ coNP. The structure of this game is different from
the one of the original MDP, as its size is polynomially in-
creased to transform the qualitative reachability condition
into a sure Büchi. In the sequel, we generalize this result to
multiple parity conditions. We illustrate the reduction by the
following example.

Example 3.1. Consider the example in Figure 2 where an
MDP (on the left side of the figure) that is a Type I ({a}, {a})
EC for a parity condition pa is transformed into a game (on
the right side of the figure) that satisfies A(pa) ∧ A(□♢R). In
order to convert the AS(♢Cmax

even(pa)) condition of (I1) into
the A(□♢R) condition, we add two states to the game: The
top-most state and the bottom-most state. In the MDP on the
left of Figure 1, a strategy that alternates between playing
action a and playing action b at state s indeed satisfies the
condition (I1).
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Figure 2. An example of a Type I EC at left, and a game
associated to it at right.

Now consider the game on the right side of Figure 2. The
top-most state and the right-most state shown in double
circles form the set R. A strategy to satisfy A(pa) ∧ A(□♢R)
is as follows: When in state s , alternate between playing
action a and playing action b. When in the bottom-most
state, play action b. The A(pa) atom is clearly satisfied. The
sure Büchi A(□♢R) holds for the following reason. When
action a is chosen in state s , if player 2 chooses to go to the
bottom-most state, then from this state player 1 plays action
b, and reaches the right-most state that is absorbing and in
R. If player 2 chooses to go to the top-most state always, as
this state is in R, the Büchi condition is again satisfied.
We now state the first step of the reduction.

Lemma 3.2. Given an MDP Γ = (S,E,Act ,Pr), a state s0 ∈ S ,
a set of parity conditions {pa | a ∈ A}, and a target set R ⊆ S ,
it can be decided if s0 |=Γ

∧
a∈A

A(¬(♢R) → pa) ∧ AS(♢R). If

the answer is Yes, then there exists a finite-memory witness

strategy. This decision problem is coNP complete.

This lemma relies on a reduction to a two-player game
GΓ
R, {pa | a∈A}

with a conjunction of one Büchi and multiple
parity conditions, that we call a Streett-Büchi game. A formal
definition of this game is given in [4]. The approach is the
same as in Lemma 3 of [1], that studies the case where A is
a singleton.

Lemma 3.3. Given an MDP Γ = (S,E,Act ,Pr), a state s0 ∈

S , a set of parity conditions {pa | a ∈ A}, and a target set

R ⊆ S , if for all s ∈ S it holds that s |=Γ
∧
a∈A

A(pa) then we

have that s0 |=Γ
∧
a∈A

A(¬(♢R) → pa) ∧ AS(♢R) if and only if

s0 |=Γ
∧
a∈A

A(pa) ∧ AS(♢R).

The proof of this lemma can be found in [4]. This lemma re-
lates the

∧
a∈A

A(¬(♢R) → pa)∧AS(♢R) objective of Lemma 3.2

and the
∧
a∈A

A(pa) ∧ AS(♢R) objective of Type I (A, {a}) ECs

under the condition that for all s ∈ S it holds that s |=Γ∧
a∈A

A(pa). As I1 implies s |=Γ
∧
a∈A

A(pa), pruning states that

do not satisfy
∧
a∈A

A(pa) before using Lemma 3.2 and Lemma 3.3

is always possible. Lemma 3.2 and Lemma 3.3 can only be
used to compute Type I (A, {a}) ECs. We have the following
lemma to relate Type I (A, {a}) ECs and Type I (A,A) ECs.

Lemma 3.4. In an EC C , for all s ∈ C we have that s |=Γ⇂C∧
a∈A

A(pa) ∧
∧
a∈A

AS(♢Cmax
even(pa)), iff for all ai ∈ A, and for all

s ∈ C , we have that s |=Γ⇂C
∧
a∈A

A(pa) ∧ AS(♢Cmax
even(pai )).

Proof of Lemma 3.4 appears in [4]. We now state that we
can compute the maximal Type I (A,A) ECs.

Lemma 3.5. Given an MDP Γ, it is possible to compute the set

of maximal Type I (A,A) ECs . This can be done by solving

iteratively a number of Streett games that are polynomial in

|A| and |S |.

The proof of Lemma 3.5 and a detailed algorithmic pro-
cedure for computing the set of maximal Type I (A,A) ECs
can be found in [4]. In that procedure we iteratively com-
pute the maximal Type I (A, { ai }) ECs for all ai ∈ A. The
combination of Lemma 3.2 and Lemma 3.3 is used for the
computation of the set maximal Type I (A, {ai }) ECs. Ev-
ery time we do this computation, we prune all the states
that do not belong to at least one of these ECs and solve
Streett games again. We note that computing the maximal
Type I (A, {ai }) ECs follows an approach similar to the the
procedure in [1] that computes the set of maximal SGECs.
The difference is that we add an additional step in our algo-
rithm, and use Lemma 3.4 to be able to combine the different
{pai }. We note that a naive generalization of the algorithm
in [1] to compute the set of maximal Type I (A,A) ECs re-
sults in an EXPTIME complexity , while we end up with a
PNP complexity as we show later in Section 7.

4 Type II end-components
In this section, we define Type II ECs that are a generalization
of UGEC defined in [5]. In the setting of the current paper,
they are a generalization of Type I ECs, that have an addi-
tional condition. The main result of the section, Lemma 4.2,
shows an equivalence between solving the realizability prob-
lem for formulas of the form

∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ) and

solving the realizability problem for formulas involving sure
parity conditions and almost-sure reachability of the Type II
end-components. To do so, the two directions of the proof are
done separately. For the right to left direction, first Lemma 4.4
shows that inside a Type II EC, there always exists a strategy
σ for

∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ). In Lemma 4.6, we use the

strategy to reach a Type II EC and thereafter play σ , com-
pleting the proof of this direction.
For the other direction, we first show that for a strategy

satisfying formula
∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ), all the states

that are visited under this strategy satisfy this formula. We
then introduce the notion of density in Definition 4.8 to
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Figure 3. An example of a Type II EC

relate in Lemma 4.9 the states satisfying formula
∧
a∈A

A(pa) ∧∧
as ∈AS

AS(pas ) to the Street-Büchi game of Section 3. Since

Street-Büchi games are related to Type I ECs, and Type II ECs
are extensions of Type I ECs, it then remains to prove that
there exists at least one Type II EC in the MDP. This is done
in Lemma 4.10.
Given two sets of parity conditions {pa | a ∈ A} and

{pas | as ∈ AS}, an end-componentC of Γ is Type II (A,AS)
if the following two properties hold:

• (II1) ∀ s ∈ C, s |=Γ⇂C
∧
a∈A

A(pa) ∧
∧
a∈A

AS(♢Cmax
even(pa))

• (II2) ∀ s ∈ C, s |=Γ⇂C
∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas )

We note that condition (II1) is exactly the one defining a
Type I (A,A) EC.Wewrite Type II (A,AS) EC as Type II EC
when the parity sets are clear from the context. We intro-
duce the following notations: ECII(Γ,A,AS) is the set of all
Type II (A,AS) ECs, and TII,Γ,A,AS = ∪U ∈ECII(Γ,A,AS)U is
the set of states belonging to some Type II EC.
Intuitively, a Type II (A,AS) EC, is a Type I (A,A) EC

where there also exists an additional strategy staying within
the EC and almost-surely satisfying all parity conditions pa
and pas . This notion generalizes the notion of a ultra-good
end-component (UGEC in [5]) which is a Type II EC where
both A and AS are singletons. In the sequel, we use the
following notation:

∧
(A,AS) =

∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ).

Finding solutions for (II2) is done in [17], and it is shown
in [5] how to use simple techniques from [2]. Winning strate-
gies for (II2) may require either randomization or determin-
istic finite memory. We showed how to compute ECs satisfy-
ing (II1) (Type I ECs) in Lemma 3.5. In the sequel we relate
Type II ECs to the formula

∧
(A,AS). In particular, from

every state belonging to a Type II ECs there exists a strategy
satisfying the formula

∧
(A,AS). We illustrate this by the

following example.

Example 4.1. Consider the example in Figure 3. We show
a strategy satisfying A(p1) ∧ AS(p2) in an MDP that is also a
Type II EC. Indeed every state satisfies condition (II1) when
action a is chosen from state s and every state satisfies con-
dition (II2) when action b is chosen from state s .
Now the strategy from s to satisfy A(p1) ∧ AS(p2) is the

following. In round 1, action b is chosen some i0 times. If the
state with parity (2, 2) is not visited when actionb is chosen i0
times, then action a is chosen until the state with parity (2, 1)

is visited. Once state (2, 1) is visited, we proceed to round 2 in
which action b is chosen i1 = i0 + 1 times. From every round,
we proceed to the next round if either the state with parity
(2, 2) is visited in the current round, or otherwise if the state
with parity (2, 1) is visited and so on, resulting in action b
being chosen i j = i0+j times at round j . Nowwe compute the
probability of not choosing action a from s during n rounds.
The probability of not choosing a from s after the first round
is 1 − 2−i0 . The probability of not choosing a from s after the
first and the second round is (1−2−i0 ) · (1−2−(i0+1)), and thus
the probability of never choosing a when n rounds already
happened is p(n) =

∏∞
j=n(1 − 2−(i0+j)). In [5], it has been

shown that limn→∞ p(n) = 1, implying that with probability
1 action a will eventually stop being played.

The strategies for conditions (II1) and (II2) in the example
above are deterministic memoryless strategies. However, in
general, the strategy for (II1)may require finite memory and
the strategy for (II2) may require memory or randomization.
We illustrate this in the full version [4].

We now state the main result of this section.

Lemma 4.2. Given an MDP Γ, and two sets of parity condi-
tions {pa | a ∈ A} and {pas | as ∈ AS}, for all states s0, we

have s0 |=Γ
∧
(A,AS) iff s0 |=Γ

∧
a∈A

A(pa)∧AS(♢TII,Γ,A,AS).

A strategy that enforces such conditions may require infinite

memory.

We show each direction separately. We fix some s0 ∈ S and
use it throughout this section. The necessity of using infinite
memory is proved in Theorem 18 of [5], in the subcase where
A and AS are singletons.
We start with the right-to-left implication. Since s0 |=Γ∧

a∈A
A(pa) ∧ AS(♢TII,Γ,A,AS), there exists a witness strategy

σT . By definition, paths in PathsΓ
[σT ]

(s0) eventually reaches
some Type II EC C ∈ ECII(Γ,A,AS) with probability one.
Since C is a Type II EC, there exist two strategies, σ1 and
σ2 respectively ensuring condition (II1) and (II2). In what
follows we define a strategy σC from σ1 and σ2 such that for
all s ∈ C we have s,σC |=Γ

∧
(A,AS). Finally, we compute

a strategy σ such that from s0, we play σT until reaching
a Type II EC C , where we play σC . This strategy σ satisfies∧
(A,AS) from s .
We first show how to construct the infinite memory strat-

egy σC from σ1 and σ2.

Definition 4.3. Let C ∈ ECII(Γ). Let (ni )i ∈N be a sequence
of naturals ni such that for all i ∈ N we have:

PrΓ⇂C [σ2] [{ρ · ρ ′ ∈ PathsΓ⇂C
[σ2]

| ρ ∈ FpathsΓ⇂C
[σ2]
,

∀a ∈ A, ∃ka < ni , ρ(ka) ∈ Cmax
even(pa)}] ≥ 1 − 2−i

The strategy σC is defined as follows.
1. Play σ2 for ni steps. Then i = i + 1 and go to 2.



LICS ’20, July 8–11, 2020, Saarbrücken, Germany Raphaël Berthon, Shibashis Guha, and Jean-François Raskin

2. If for all a ∈ A :Cmax
even(pa) was visited in phase 1, then

go to 1.
Else, play σ1 until all Cmax

even(pa) are reached, and then
go to 1.

The following lemma states that for all s ∈ C , the strategy
σC indeed satisfies

∧
(A,AS):

Lemma 4.4. Let C ∈ ECII(Γ,A,AS). For all s ∈ C , it holds
that s,σC |=Γ

∧
(A,AS).

Proof. Let us first look at the
∧
a∈A

A(pa) condition. Each path

π has to follow one of these three cases:
• Strategy σ1 is only played a finite number of times,
and for a finite duration: This means that eventually
for some i0, in each round i > i0, in episodes of ni
steps, Cmax

even(pa) was visited for all a ∈ A. This also
means that eventually only σ2 is played and π stays in
C , hence all pa are satisfied on π .

• Strategy σ1 is eventually played for an infinite duration
without coming back to 1: By definition of σ1, path π
satisfies all pa .

• Strategy σ1 and σ2 are both played infinitely often:
The only way to stop strategy σ1 is to have visited
all Cmax

even(pa). As σ2 and σ1 were both played infinitely
often, σ1 was stopped infinitely often, and soCmax

even(pa)
was visited infinitely often for all a ∈ A. As π has to
stay in C , it implies that π satisfies all pa .

For the
∧

as ∈AS

A(pas ) conditions, we can prove that with

probability 1, eventually only σ2 is played. As σ2 has itself
probability 1 of ensuring all pas , we get that σC satisfies∧
as ∈AS

A(pas ). □

Now we construct a strategy σ from σT and σC .

Definition 4.5. Based on strategies σT and σC for all C ∈

ECII(Γ), we build the global strategy σ as follows.
1. Play σT until a Type II EC C is reached, then go to 2.
2. Play σC forever.

The following lemma concludes this direction of the proof
of Lemma 4.2:

Lemma 4.6. It holds that s0,σ |=Γ
∧
(A,AS).

Now we sketch the proof of the left-to-right implication
of Lemma 4.2. We make use of the following lemma.

Lemma 4.7. Given an MDP Γ, and two sets of parity con-

ditions {pa | a ∈ A} and {pas | as ∈ AS}, for all states s
and s ′, and for all strategies σ the following holds: if s,σ |=Γ∧
(A,AS) and s ′ < J

∧
(A,AS)K, then s ′ < PathsΓ

[σ ]

(s).

The proof follows from the fact that for a strategy σ in Γ
that satisfies A(p) (resp. AS(p)), for all finite paths π from s
in Γ[σ ], if π leads to a state s̃ , then it holds that for the set of

paths originating from s̃ , we have that A(p) (resp. AS(p)) is sat-
isfied. A formal proof can be found in[4]. We now introduce
the following definition.

Definition 4.8 (Density). Let Γ = (S,E,Act ,Pr) be an MDP,
s ∈ S an initial state, σ a strategy, and R ⊆ S . We say that R is
dense in σ from s if and only if for all ρ ∈ FpathsΓ

[σ ]

(s), there
exists ρ ′ such that ρ · ρ ′ ∈ FpathsΓ

[σ ]

(s) and Last(ρ ′) ∈ R.
That is, after all prefixes in the tree PathsΓ

[σ ]

(s), there is a
continuation that visits R.

Now we state the following lemma that uses the above
definition.

Lemma 4.9. Given an MDP Γ = (S,E,Act ,Pr), a state s ∈ S ,
a set of parity conditions {pa | a ∈ A}, a set R ⊆ S , if there
exists a strategy σ such that s,σ |=Γ

∧
a∈A

A(pa), and R is dense

in σ from s , then s |=GΓ
R, {pa | a∈A}

∧
a∈A

A(pa) ∧ A(□♢B), with

GΓ
R, {pa | a∈A}

the Streett-Büchi game defined in Section 3 where

the Büchi condition is B.

Lemma 4.9 is proved in [4]. Lemma 4.7 implies that for
all initial state s ′, in Γ⇂C

[σ ], after all finite path ρ beginning
from some state (q′, s ′), and ending in (q′′, s ′′) it holds that
(q′′, s ′′),σ |=Γ

∧
(A,AS). Thus after every finite path, there

exists a continuation that visits TII,Γ,A,AS , hence TII,Γ,A,AS

is dense from s ′ in σ , and so by Lemma 4.9, Lemma 3.2 and
Lemma 3.3, we have that s0 |=Γ

∧
a∈A

A(pa) ∧ AS(♢TII,Γ,A,AS).

Recall that s0 is the initial state in Lemma 4.2.We detail below
why TII,Γ,A,AS is non-empty.

Lemma 4.10. If s0 |=Γ
∧
(A,AS) then ECII(Γ) , ∅.

The proof can be sketched as follows. Given an MDP Γ =
(S,E,Act ,Pr), an initial state s , a strategy σ and a set of paths
Π ⊆ PathsΓ

[σ ]

(s), we define States(Π) = {s ∈ S | ∃π ∈

Π, ∃n ∈ N0, π (n) = s}. To prove this lemma, we first study
the following set S of subsets of S :

S = {R ⊆ S | ∃ s ∈ S, ∃σ a strategy,

(s,σ |=Γ

∧
(A,AS)) ∧ (R = States(PathsΓ

[σ ]

(s)))}.

Intuitively, this set contains every subset of S that contains all
states reachable by some witness strategy σ for

∧
(A,AS),

from some state s ∈ S . First note that s0 |=Γ
∧
(A,AS)

implies that S is non-empty, as for a witness strategy σ , we
have R = States(PathsΓ

[σ ]

s0)) ∈ S, by definition.
Second, we show that all minimal elements of S under

set inclusion ⊆ are Type II ECs, i.e., for all R ∈ min⊆(S), it
holds that R ∈ ECII(Γ). The details can be found in [4].

Finally, we state the following lemma. It refines Lemma 4.10
by showing that some Type II EC of ECII(Γ) can be reached
almost-surely while satisfying

∧
a∈A

(A(pa). We define

Tmin
II,Γ,A,AS

= ∪R∈min⊆(S)R, that is the set of all states that
belong to a minimal set R of S.
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Lemma 4.11. If s0 |=Γ
∧
(A,AS) then s0 |=Γ

∧
a∈A

(A(pa) ∧

AS(♢Tmin
II,Γ,A,AS

)).

The details of the proof can be found in [4].
We end this sectionwith the following observation. Lemma

4.7 implies that winning strategies only visit states belonging
to J

∧
(A,AS)K. As a consequence, pruning the states that

do not satisfy
∧
(A,AS) does not affect correctness. We

use this pruned MDP in the rest of the paper. We state this
formally:

Assumption 4.12. For all states s of Γ, we have:
s ∈ J

∧
(A,AS)K.

We detail how to do this pruning in Section 7, we use
Lemma 4.2 to find the states that do not satisfy the objective.

5 Type III end-components
In this section, we define Type III ECs. These end-components
are used to characterize the winning strategies for formu-
las of the form

∧
(A,AS) ∧ NZ(pnz ). To do so, we show in

Lemma 5.3 that all Type III ECs satisfy such a formula. In
Lemma 5.5, we use the previous lemma and the technical
Lemma 5.4 to relate the formula

∧
(A,AS) ∧ NZ(pnz ) to

the almost-sure reachability of the set of Type III ECs under
the constraint

∧
(A,AS). We explain in Section 6 how to

compute reachability of a set of states under the constraint∧
(A,AS), and in Section 7 we explain how to compute the

set of Type III ECs.
Given two sets of parity conditions {pa | a ∈ A}, {pas | as ∈

AS} and another parity condition pnz , an end-componentC
of Γ is Type III (A,AS, pnz ) if the following two properties
hold:

• (III1) ∀ s ∈ C, s |=Γ
∧
(A,AS);

• (III2) ∀ s ∈ C, s |=Γ⇂C
∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas ) ∧

AS(pnz )
We write Type III (A,AS, pnz ) EC as Type III ECs when the
parity sets are clear from the context. We note that con-
dition (III1) may require an infinite memory strategy (see
Lemma 4.2), and can always be satisfied in the pruned MDP,
due to Assumption 4.12. Condition (III1) can be checked us-
ing [17]. Note that condition (III2) is only about the parity
conditions indexed byA andAS, and must hold while stay-
ing inside the end-componentC , but the witness strategy for
(III1) may leave C . This notion strengthens in a non-trivial
way the notion of very-good end-component (VGEC in [5])
which are Type III ECs whereA is a singleton,AS = ∅, and
the pnz stays as it is. From condition (III1) and Lemma 4.2
we know that if there exists a Type III EC in the MDP Γ then
there also exists a Type II EC. We introduce the following no-
tations: ECIII(Γ,A,AS, pnz ) is the set of all Type III(A,AS,
pnz ) ECs of Γ, and TIII,A,AS,pnz = ∪C ∈ECIII(Γ,A,AS,pnz )C is
the set of states belonging to some Type III EC in Γ.

2,2,1 1,1,1

1,1,1

2,2,2
s

a, 1

b, 1

a, 0.5 a, 0.5

a, 1

a, 1

Figure 4. An example of a Type III EC

In the sequel, we relate Type III ECs to the formula∧
(A,AS)∧NZ(pnz ). In particular, from all states belonging

to a Type III ECs there exists a strategy satisfying the formula∧
(A,AS) ∧ NZ(pnz ).
We illustrate this by the following example.

Example 5.1. Consider the example in Figure 4. We show
a strategy satisfying A(p1) ∧ AS(p2) ∧ NZ(p3) in an MDP that
is also a Type III EC: All the states satisfy condition (III1)
when action a is chosen from state s , and all the states satisfy
condition (III2) when action b is chosen from state s .

Now the strategy from s to satisfy A(p1) ∧ AS(p2) ∧ NZ(p3)

is the following. In round 1, action b is chosen some i0 times.
If the state with parity value (2, 2, 2) is visited in round 1,
then proceed to round 2. Otherwise action a is chosen from
state s at the end of round 1. In round 2, action b is chosen
i1 = i0+1 times and so on, resulting in action b being chosen
i j = i0 + j times in round j . From every round, we proceed to
the next round if the state with parity value (2, 2, 2) is visited
in the current round, or otherwise we switch to playing
action a from state s . Now we compute the probability of
never switching to action a in state s . The probability of not
choosing action a from s after the first round is (1−2−i0 ). The
probability of not choosing a from s after the first round and
as well as after the second round is (1 − 2−i0 ) · (1 − 2−(i0+1)),
and thus the probability of not choosing a from s after each
of the first n rounds is p(n) = Πn−1

j=0 (1− 2−(i0+j)). In [5], it has
been shown that limn→∞ p(n) > 0, implying that with non-
zero probability, action a will never be played in s . Hence
with non-zero probability p3 holds.

Proposition 5.2 (Optimal reachability [2]). Given an MDP

Γ = (S,E,Act ,Pr), and a target set T ⊆ S , we can compute

for each state s ∈ S the maximal probability v∗
s to reach T , in

polynomial time. There is an optimal deterministic memoryless

strategy σ ∗
that enforces v∗

s from all s ∈ S . Now, fix s ∈ S and

c ∈ Q such that c < v∗
s . Then there exists k ∈ N such that

by playing σ ∗
from s for k steps, we reach T with probability

larger than c .

Lemma 5.3. Given an MDP Γ, and a Type III EC C in Γ, for
all states s ∈ C , we have s |=Γ

∧
(A,AS) ∧ NZ(pnz ).

Proof. Consider some ε > 0, and f : N0 → Q ∩ (0, 1] a series
of probabilities such that the infinite product

∏
i ∈N0 f (i) >

1−ε . Let σ1 be a strategy satisfying (III1), and σ2 be a strategy
satisfying (III2). Using Proposition 5.2, we associate with σ2 a
sequence of numbersд : N0 → N0 such that ifσ2 is played for
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д(i) steps then for all a ∈ A we have thatCmax
even(pa) is visited

with probability at least f (i). We consider the following
infinite-memory strategy σ by combining strategies σ1 and
σ2 as follows:

• a) Let i = 0
• b) Play σ2 for д(i) steps. Let i = i + 1.
• c) if for all a ∈ A we have Cmax

even(pa) was visited, then
go to b), else play σ1 forever.

When following σ , in each round i , we have probability at
least f (i) of continuing to play σ2. The probability of playing
σ2 forever is thus the same as the probability of visiting
all Cmax

even(pa) in each round, that is, at least 1 − ε , and thus
satisfying the parity conditions pas for as ∈ AS and pnz
with probability 1 − ε . In all the paths where σ2 keeps being
played, for all a ∈ A we have that pa is satisfied since
Cmax
even(pa) is visited infinitely often. For the plays switching

to σ1 at some point (we have probability ε to switch to one of
these plays at some point), we have

∧
(A,AS). This implies

that considering all possibilities, we have that all conditions
pas are satisfied with probability 1 − ε + ε = 1, and that
all possible plays satisfy all pa . Finally, pnz is satisfied with
probability 1 − ε , and hence with probability greater than 0.
Thus for s ∈ C , we have s,σ |=Γ

∧
(A,AS) ∧ NZ(pnz ). □

We now relate the existence of a Type III end component
with the

∧
a∈A

A(pa) objective. We begin with the following

observation.

Lemma 5.4. Given an end-component C in an MDP Γ, a set
of parity conditions {px | x ∈ X }, for all states s ∈ C , we have
s |=Γ⇂C AS(

∧
x ∈X

px ) iff s |=Γ⇂C NZ(
∧
x ∈X

px ) .

The difficult part of the proof is the right to left implici-
ation. It uses the fact that Proposition 2.2 implies that the
set of states visited infinitely often forms an end-component
with probability 1. From there, we find a sub-EC of C such
that in this sub-EC for all x ∈ X , condition px has even max-
imum priority. As there exists a strategy to visit all the states
of this sub-EC almost-surely, we have s |=Γ⇂C AS(

∧
x ∈X

px ).

The detailed proof of the lemma can be found in [4].
Now we state the main result of this section that relates

the existence of a Type III end component to the objective∧
(A,AS) ∧ NZ(pnz ).

Lemma 5.5. Given an MDP Γ, two sets of parity conditions

{pa | a ∈ A}, {pas | as ∈ AS}, and another parity condition

pnz , for all states s , we have s |=Γ
∧
(A,AS) ∧ NZ(pnz ) iff

s |=Γ
∧
(A,AS) ∧ NZ(♢TIII,A,AS,pnz ) .

Proof. We begin with the right to left implication. Consider a
strategyσs such that s,σs |=Γ

∧
(A,AS)∧NZ(♢TIII,A,AS,pnz ).

We show below that s |=Γ
∧
(A,AS) ∧ NZ(pnz ). First note

that for all states q ∈ TIII,A,AS,pnz , we consider a strat-
egy σq such that q,σq |=Γ

∧
(A,AS) ∧ NZ(pnz ) (we know

that such a strategy always exists in a Type III EC, thanks

to Lemma 5.3). Now we construct a strategy σ , such that
s,σ |=Γ

∧
(A,AS) ∧ NZ(pnz ). Strategy σ is defined from σs

and σq as follows: We play σs from s . If we reach a state q
belonging to a Type III EC, we play σq from q forever. Since
such a state q can be reached with non-zero probability, and
strategy σq satisfies pnz with non-zero probability, we have
that σ satisfies pnz with non-zero probability. As both σs
and σq satisfy

∧
(A,AS), and thus, while following σ , since

every path in the corresponding MC ends up either follow-
ing σs forever or following σq forever, we have that σ also
satisfies

∧
(A,AS).

Now for the left to right implication, let σ be a strategy
such that s,σ |=Γ

∧
(A,AS) ∧ NZ(pnz ). It is easy to see that

s,σ |=Γ NZ(
∧
a∈A

(pa) ∧
∧

as ∈AS

(pas ) ∧ (pnz )). From Proposi-

tion 2.2, there is probability 1 that an infinite path ends up
in an end-component. Hence in the Markov chain Γ[σ ] there
is a non-zero probability that an infinite path will reach
an end-component C such that for all states s ′ ∈ C , we
have s ′,σ |=Γ⇂C NZ(

∧
a∈A

(pa) ∧
∧

as ∈AS

(pas ) ∧ (pnz )). From

Lemma 5.4, we thus have that for all s ′ ∈ C , there exists
σ ′ such that s ′,σ ′ |=Γ⇂C AS(

∧
a∈A

(pa) ∧
∧

as ∈AS

(pas ) ∧ (pnz )).

Thus condition (III2) is satisfied. As we consider a pruned
MDP thanks to Assumption 4.12, for all s ′ ∈ C we have that
s ′ |=Γ

∧
(A,AS).

Thus C is a Type III EC that can be reached from s with
non-zero probability, and thus we have:
s,σ |=Γ

∧
(A,AS) ∧ NZ(♢TIII,A,AS,pnz ). □

6 Formulas with multiple Non-Zero and
multiple Exists

In this section, we discuss how to compute strategies for for-
mulas that consist of several sure parity objectives, several
almost-sure parity objectives, several non-zero parity objec-
tives, and several existential parity objectives. We show in
Lemma 6.1 that such a formula can be split into sub-formulas
having a single non-zero or a single existential parity objec-
tive. Further, we show in Lemma 6.3 that a single non-zero
parity objective can be transformed into an existential parity
objective. We finally show in Lemma 6.5 how to check the
satisfiability of a formula that consists of several sure parity
objectives, several almost-sure parity objectives, and one
existential parity objective.
Lemma 6.1. Given an MDP Γ, a state s , four sets of parity
conditions {pa | a ∈ A}, {pas | as ∈ AS}, {pnz | nz ∈ NZ},

and {pe | e ∈ E}, the following holds: s |=Γ
∧
(A,AS) ∧∧

nz∈NZ

NZ(pnz ) ∧
∧
e ∈E

E(pe ) iff for all nz ∈ NZ we have s |=Γ∧
(A,AS) ∧ NZ(pnz ), and for all e ∈ E, we have s |=Γ∧
(A,AS) ∧ E(pe )

Proof. As the left to right implication is obvious, we prove
here the other direction. For i ∈ NZ ∪ E, we consider a
strategy σi such that s,σi |=Γ

∧
(A,AS) ∧ Qi (pi ) for the
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appropriate Qi ∈ {NZ, E}. Now we construct a randomized
strategy σ given all σi in which each σi is chosen uniformly,
that is with equal probability. Clearly, s |=Γ

∧
(A,AS) ∧∧

nz∈NZ

NZ(pnz ) ∧
∧
e ∈E

E(pe ), and hence the result. □

We now show that a non-zero objective can be replaced
with an existential parity objective. Towards this, we first
observe the following.

Proposition 6.2. Every reachability condition can be trans-

lated to a parity condition.

Proof. Given an MDP Γ = (S,E,Act ,Pr), we construct an
MDP Γ′ = (S ′,E ′,Act ,Pr′) such that S ′ = S × {1, 2} where
intuitively Γ′ consists of two copies of Γ with state space
S×{1} and S×{2} respectively, and the reachability condition
being satisfied corresponds to moving from the first copy
to the second copy, and staying there forever. Formally, we
consider the parity condition p such that for s ′ ∈ S ′, with
s ′ = (s, i) for s ∈ S and i ∈ {1, 2}, we have p(s ′) = i . □

We use this Γ′ in the following two lemmas.

Lemma 6.3. Given an MDP Γ, two sets of parity conditions

{pa | a ∈ A} and {pas | as ∈ AS}, and a reachability set R,
there exists a state s ′ in Γ′, and a parity condition denoted p♢R
such that for all states s , we have s |=Γ

∧
(A,AS) ∧ NZ(♢R)

iff s ′ |=Γ′
∧
(A,AS) ∧ E(p♢R ).

The result comes from noticing that a non-zero reacha-
bility objective and an existential reachability objective are
equivalent. It is then enough to use Proposition 6.2 to get
Lemma 6.3. The detailed proof of the lemma appears in [4].

We get from Lemma 5.5 and Lemma 6.3 the following:

Lemma 6.4. Given an MDP Γ, and two sets of parity condi-
tions {pa | a ∈ A} and {pas | as ∈ AS}, and a parity condi-

tion pnz , for all states s , we have s |=Γ
∧
(A,AS)∧NZ(pnz ) iff

there exists s ′ in Γ′ such that s ′ |=Γ′
∧
(A,AS) ∧ E(p♢TIII,nz

),

where TIII,nz is defined w.r.t. Γ
′
.

Now, since by Assumption 4.12 we have removed all the
states that do not satisfy

∧
(A,AS), we have the following:

Lemma 6.5. Given an MDP Γ, a state s , two sets of parity
conditions {pa | a ∈ A} and {pas | as ∈ AS}, and another

parity condition p, we have that s |=Γ
∧
(A,AS) ∧ E(p) iff

s |=Γ E(
∧
a∈A

pa ∧ p).

Proof. The left to right result is obvious as
∧
a∈A

A(pa) ∧ E(p)

implies E(
∧
a∈A

pa ∧ p).

For the other direction, consider a strategy σ̂ such that
s, σ̂ |=Γ E(

∧
a∈A

pa ∧ p). Now, a conjunction of parity condi-

tions is a Streett condition [15], and non-emptiness problem
of Streett automata is decidable.
We noted in Section 2 that satisfying existentially is the

same as finding a satisfying path in the nondeterministic

automaton associated to Γ. This means that if the Streett
automaton is non-empty, then there exists a finite-memory
strategy σ (linear in the indices of pa and p) in Γ such that
there exists a path π in the MC Γ[σ ] satisfying both p and all
pa for a ∈ A.
Now by assumption, there exists a strategy σ∧ such that

s,σ∧ |=Γ
∧
(A,AS). A strategyσ such that s,σ |=Γ

∧
(A,AS)

∧ E(p) is obtained below by combining σ̂ and σ∧ as follows.
At each step a coin is tossed. If it gives head, then we play
σ∧ forever. Otherwise, we play this step as specified by the
strategy σ̂ . If this results in deviating from the path π , then
we play σ∧ forever, else repeat the same process.

Strategy σ has a path ensuring p: the one where we always
follow σ̂ , that happens when all the coin tosses give tails,
and the state randomly taken in the MDP is always in π . The
probability of switching to σ∧ some time is 1, thus satisfying∧
as ∈AS

AS(pas ). If we follow the path π , then for all a ∈ A we

have that pa is satisfied, otherwise we switch to σ∧ at some
point, and for all a ∈ A we again have that pa is satisfied,
thus ensuring

∧
a∈A

A(pa). □

This concludes the decidability proof of the realizability of
the negation and disjunction-free fragment of QPL . Indeed,
given a formula s |=Γ

∧
(A,AS)∧

∧
nz∈NZ

NZ(pnz )∧
∧
e ∈E

E(pe ),

we use Lemma 6.1 to split it into formulas of the form s |=Γ∧
(A,AS) ∧ NZ(pnz ), and of the form s |=Γ

∧
(A,AS) ∧

E(pe ). We then apply Lemma 5.5 on formulas of the form
s |=Γ

∧
(A,AS)∧NZ(pnz ), and then use Lemma 6.4 to trans-

form the non-zero objective into an existential objective.
For formulas of the form s |=Γ

∧
(A,AS) ∧ E(pe ), we use

Lemma 6.5.
By Remark 2.1 it shows the decidability of the QPL -

realizability problem. We state the complexity of this re-
alizability problem in the next Section.

7 Complexity results
In this section, we analyze the complexity of deciding the
existence of strategies to satisfy QPL formulas. Recall from
the results of Sections 5 and 6, that in order to find strate-
gies for formulas of the form

∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ) ∧∧
nz∈NZ

NZ(pnz )∧
∧
e ∈E

E(pe ), we need to compute the set of max-

imal Type III ECs. In particular, we need these ECs for subfor-
mulas of the form

∧
a∈A

A(pa)∧
∧

as ∈AS

AS(pas )∧
∧

nz∈NZ

NZ(pnz ).

This in turn requires solving several Streett games in general
(Lemma 3.5). The procedure is described in Algorithm 1. We
show that the algorithm runs in time ΣP

2 = PNP (Theorem
7.1). We also show that we have a polynomial algorithm for
the special case where the setA is empty (Theorem 7.2), and
that randomization and finite memory are required (Theo-
rem 7.3). The problem is in NP∩CoNP when A is singleton
(Theorem 7.4). Finally, we show that finding a strategy for
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Algorithm 1

Input : An MDP Γ, s a state of Γ, parity conditions
{pa | a ∈ A}, {pas | as ∈ AS}, {pnz | nz ∈ NZ}, and
{pe | e ∈ E}.
Output : true if
s |=Γ

∧
a∈A

A(pa)
∧

as ∈AS

AS(pas ) ∧
∧

nz∈NZ

NZ(pnz ) ∧
∧
e ∈E

E(pe )

else false.
1: Compute the set of maximal Type I (A,A) ECs C such

that ∀ s ′ ∈ C, s ′ |=Γ⇂C
∧
a∈A

A(pa) ∧
∧
a∈A

AS(♢Cmax
even(pa)). //

By Lemma 3.5.

2: Compute the set of maximal Type II (A,AS) ECs C: C
is a maximal Type I (A,AS) EC and ∀ s ′ ∈ C, s ′ |=Γ⇂C∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas ).

3: Compute the set S1 of states s ′ such that s ′ |=Γ∧
a∈A

A(pa) ∧ AS(♢TII,Γ,A,AS). // Correct by Lemma 4.2.

If s < S1 then return false.
4: Compute Γ⇂ S1 where all the states that do not satisfy∧

(A,AS) have been pruned. // Correct by Lemma 4.7.

5: for all nz ∈ NZ do
6: Compute the set of maximal Type III (A,AS, pnz )

ECs C of Γ⇂ S1: ∀ s ∈ C , we have that s |=(Γ⇂S1)⇂C∧
a∈A

AS(pa)
∧

as ∈AS

AS(pas ) ∧ AS(pnz ). // By Lemma 5.5.

7: Compute the parity condition p♢TIII,A,AS,pnz
and the

MDP Γ′ with set S′
1 of states // Γ

′
and S′

1 are defined in

Proposition 6.2.

8: Check if (s, 1) |=S′
1
E(

∧
a∈A

pa ∧ p♢TIII,A,AS,pnz
). // By

lemmas 6.4 and 6.5; (s, 1) is defined in Proposition 6.2.

9: for all e ∈ E do
10: Check if s |=S1 E(

∧
a∈A

pa ∧ pe ). // By Lemma 6.5.

11: If any of the checks in Steps 8 and 10 fails then return
false, else return true.

an arbitraryQPL formula that may have combination of con-
junctions and disjunctions is in ΣP

2 (= NPNP) (Theorem 7.5),
and it is both NP-hard and coNP-hard (Theorem 7.6).

Theorem 7.1. Given an MDP Γ, and a state s , Algorithm 1

decides if s |=Γ
∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ) ∧
∧

nz∈NZ

NZ(pnz ) ∧∧
e ∈E

E(pe ) in PNP time.

Proof. For the correctness of Algorithm 1, consider a formula
φ =

∧
a∈A

A(pa) ∧
∧

as ∈AS

AS(pas ) ∧
∧

nz∈NZ

NZ(pnz ) ∧
∧
e ∈E

E(pe ).

Given φ, we explain below how to check its satisfiability.
According to Lemma 6.1, to check if s |=Γ φ, we need to

check for all nz ∈ NZ, if s |=Γ
∧
(A,AS) ∧ NZ(pnz ) and

that for all e ∈ E if s |=Γ
∧
(A,AS) ∧ E(pe ).

For the non-zero (NZ) part, recall from Section 6, that for
each pnz , we need to compute the set of all Type III ECs for

the objective
∧
(A,AS)∧NZ(pnz ). Recall that each Type III

ECC is such that two properties hold. First ∀ s ′ ∈ C , we have
s ′ |=Γ

∧
(A,AS); we do this in Step 3 of the algorithm. Then

we also check that∀ s ′ ∈ C, s ′ |=Γ⇂C
∧
a∈A

AS(pa)
∧

as ∈AS

AS(pas )

∧ AS(pnz ). This is done in Step 6.
Now for an existential parity objective E(pe ), by Lemma 6.5,

we only need to check if s |=Γ⇂SJ
∧
(A,AS)K E(

∧
a∈A

pa ∧ pe ). It

remains to explain how the sub-MDP in which all states sat-
isfy the formula

∧
a∈A

A(pa)
∧

as ∈AS

AS(pas ) is computed. This is

done in Steps 1 to 4.
To do so we first find the set of states s ′ such that s ′ |=Γ∧

a∈A
A(pa)

∧
as ∈AS

AS(pas ). We find the set of maximal Type II

ECs. By definition of Type I and Type II ECs, a maximal
Type I EC that satisfies (II2) is a maximal Type II EC. We
now prove that if C is a maximal Type II EC, it is included
in C1, a maximal Type I EC. Since for all s ′ ∈ C , we have
s ′ |=Γ⇂C

∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas ), we also have that for

all s ′ ∈ C1, s
′ |=Γ⇂C1

∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas ) (it suffices

to take a strategy that has probability 1 of reaching some
state s ′′ ∈ C , and then play the strategy ensuring s ′′ |=Γ⇂C∧
a∈A

AS(pa) ∧
∧

as ∈AS

AS(pas )). Hence C1 is a Type II EC. By

maximality of C , we have C = C1. This means that to find
the maximal Type II EC, it is sufficient to compute the maxi-
mal Type I EC and remove those maximal Type I ECs that do
not ensure condition (II2). Finding the maximal Type I EC is
done in Step 1 thanks to Lemma 3.5. We then check condition
(II2) in Step 2.

It then remains to find the states s ′ such that s ′ |=Γ∧
a∈A

A(pa) ∧ AS(♢TI I,Γ,A,A) (Step 3). It can be done by trans-

forming the MDP into a Streett-Büchi game that in turn can
be transformed into a Streett game since a Büchi condition
is a special case of a parity condition, and a conjunction of
parity conditions is a Streett condition.

For the complexity, Steps 2, 4, 6, 7, 8 and 10 are polynomial.
Step 3 is parity-complete if there is only one parity condition,
polynomial if there is none, and is co-NP complete in general
(we have to solve a Streett game). Step 1 is parity-complete
if there is only one parity condition, polynomial if there is
none. In the general case, Step 1 requires to iteratively solve
a polynomial number of Streett games (which is in coNP),
and use the result of this computation to remove some of
the states, resulting in a PNP complexity. Further details of
the procedure are given in the full version in [4]. This leads
us to a PNP complexity for Algorithm 1. □

Theorem 7.2. Given anMDP Γ, and a state s , we can decide if
s |=Γ

∧
as ∈AS

AS(pas )∧
∧

nz∈NZ

NZ(pnz )∧
∧
e ∈E

E(pe ) in polynomial

time.
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1, 2 0, 1

a, 1

b, 1

a, 1

Figure 5. An MDP requiring randomized finite-memory
strategy for the objective AS(p1) ∧ E(p2).

Proof. The proof is similar to that of Theorem 7.1, but as
A = ∅ we compute Type I (A,A) that is Type I (∅,∅) ECs,
that is any EC, and so Step 1 returns the maximal ECs. In
the same way, Step 3 polynomially computes one almost-
sure reachability problem. As we consider Type I (∅,∅), the
checks in Steps 2,3,6,8 and 10 can be done with a randomized
finite-memory strategy. Further, a strategy for each of these
steps can be computed in polynomial time [17]. □

In the above proof, we show that randomized finite-memory
strategies are sufficient for formulas of the form
s |=Γ

∧
as ∈AS

AS(pas ) ∧
∧

nz∈NZ

NZ(pnz ) ∧
∧
e ∈E

E(pe ). Below, we

show that such strategies are indeed necessary.

Theorem 7.3. Given an MDP Γ, and a state s , to decide if

s |=Γ
∧

as ∈AS

AS(pas )∧
∧

nz∈NZ

NZ(pnz )∧
∧
e ∈E

E(pe ), a randomized

finite-memory winning strategy may be necessary.

Proof. We show that the lemma already holds for formulas
of the form AS(p1) ∧ E(p2). Consider the MDP in Figure 5.
We want a strategy σ such that in Γ[σ ], we have a subset of
(ab)∗aω with measure 1 to satisfy AS(p1), and we want at
least one path in (a+b)ω to satisfy E(p2). We can argue that no
randomized memoryless strategy, as well as no deterministic
memoryful strategy suffices here. However, we can use the
following randomized strategy with one bit of memory: Toss
a coin every time the token is in state (0, 1). If the coin gives
heads, play ba, otherwise if the coin gives tails once, play a
forever from the state (0, 1) (one bit of memory is used to
store if the coin has given tails). □

Theorem 7.4. Given an MDP Γ, and a state s , we can decide

in NP∩ coNP if s |=Γ A(pa) ∧
∧

as ∈AS

AS(pas ) ∧
∧

nz∈NZ

NZ(pnz ) ∧∧
e ∈E

E(pe ). This requires solving a polynomial number of parity

games.

Proof. The proof is similar to that of Theorem 7.1, but Step 1
computes maximal Type I ({ a}, {a}) ECs which can be done
in PNP∩coNP [1]. Also the set of states that ensure the objective
in Step 3 with only one sure parity condition can be com-
puted by solving a polynomial number of parity games [1, 5],
and by pruning states after solving each parity game. The
result follows since PNP∩coNP = NP ∩ coNP [9]. □

We now consider QPL without any restriction.

Theorem 7.5. QPL realizability is in NPNP .

Proof. Assume that we are given an MDP Γ, a state s , and a
QPL formula φ. We assume that φ is in negation-free normal
form. A negation-free equivalent formula can be found in
polynomial time, it suffices to take the negation normal form
(by using De Morgan’s law to push negations inwards), and
to take the dual of the negated atomic parity conditions.
We note that there exists a DNF formula equivalent to

φ with the same set of atomic objectives. If φ is satisfiable,
then there exists a conjunctive clauseψ that is a conjunction
of these atomic objectives, andψ can be guessed by an NP
machine such that s |=Γ ψ . Given this witnessψ , we can use
an NP oracle to check that ψ implies φ where the atomic
objectives are regarded as classical propositional atoms. We
can then use the PNP algorithm of Theorem 7.1 to get a proof
that indeed s |=Γ ψ implying that φ is also satisfied by s . The
result follows since the class NPPNP is the same as NPNP. □

Theorem 7.6. QPL realizability is NP-hard and coNP-hard.

Proof. The coNP-hardness follows from the fragment ofQPL
made of conjunctions of A(p) atoms that is powerful enough
to encode Streett games, as proved in [15].
We prove NP-hardness for the fragment of QPL made

of {∧,∨, A(p)}. Given a SAT formula φ in negation normal
form, we define a QPL formula φob j , and an MDP Γ both
polynomial in φ such that there exists a state s of Γ and
there exists a winning strategy for φob j from s on Γ if and
only if φ is satisfiable. Let Var = {a1, . . . an} be the set of
propositional variables of φ. Let S = {ai , āi | i ∈ [n]} be both
the set of states and the set of actions.We define theMDP Γ =
{S, {(a,b,b) | a,b ∈ S}, S, Pr } where for all a,b ∈ S we have
Pr (a,b,b) = 1. Note that the underlying graph is a complete
graph. For each i ∈ [n], we define two parity conditions pai
and pāi such that pai (ai ) = pāi (āi ) = 2, such that pai (āi ) =
pāi (ai ) = 3 and pai (b) = pāi (b) = 1 if b < {ai , āi }. We
defineψ =

∧
i ∈[1,n]

A(pai ) ∨ A(pāi ). Given the SAT formula φ in

NNF, we define a QPL formula φ ′ by transforming φ in the
following way: each ¬ai is replaced by A(pāi ) and each (non-
negated) ai is replaced by A(pai ). We define φob j = ψ ∧ φ ′.
In the MDP Γ, we consider an arbitrary state s , a strategy σ ,
and the paths in PathsΓ

[σ ]

(s). We show in [4] that s |=Γ φob j
iff φ is satisfiable. □
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