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Abstract. Variability-intensive systems (VIS) form a large and hetero-
geneous class of systems whose behaviour can be modified by enabling or
disabling predefined features. Variability mechanisms allows the adapta-
tion of software to the needs of their users and the environment. However,
VIS verification and validation (V&V) is challenging: the combinatorial
explosion of the number of possible behaviours and undesired feature
interactions are amongst such challenges. To tackle them, Featured Tran-
sitions Systems (FTS) were proposed a decade ago to model and verify
the behaviours of VIS. In an FTS, each transition is annotated with a
combination of features determining which variants can execute it. An
FTS can model all possible behaviours of a given VIS. This compact
model enabled us to create efficient V&V algorithms taking advantage
of the behaviours shared amongst features resulting in a reduction of the
V&V effort by several orders of magnitude. In this paper, we will cover
the formalism, its applications and sketch promising research directions.

Keywords: Variability-intensive systems · Modeling ·
Model-checking · Testing

1 Introduction

Variability-intensive systems (VISs) form a vast and heterogeneous class of soft-
ware systems that encompasses: Software Product Lines [2,84], operating system
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kernels, web development frameworks/stacks, e-commerce configurators, code
generators, Systems of Systems (SoS), software ecosystems (e.g., Android’s “Play
Store”), autonomous systems, etc. While being very different in their goals and
implementations, VIS see their behaviour affected by the activation or deactiva-
tion of one or more feature(s), i.e., units of variability, or configuration options.
Configurable systems may involve thousands of features with complex depen-
dencies. The set of valid combinations of features of a VIS can be represented
in a tree-like structure, called feature model (FM) [60]. Each valid combination
is a configuration of the VIS, which can be derived as a variant or a product,
terms we will use interchangeably in this paper both at the model and code level.
Each feature may be decomposed into sub-features and additional constraints
may be specified amongst the different features. Within feature models, features
can be mandatory (present in every configuration) or selected depending on the
groups they belong to (OR, XOR, etc.) and cross-tree constraints (dependence
on or exclusion of other feature selections). To support automated reasoning, fea-
ture models have been equipped with formal semantics and in particular based
on first-order logic [88]. Thanks to their formal semantics, operations on fea-
ture models such as inconsistency reasoning can be automated thanks to SAT
solvers [75].

Considering that some VIS such as the Linux kernel can easily have more
than 10,000 features and that the number of possible variants grows exponen-
tially with the number of features, considering each variant independently for
verification and validation (V&V) activities is intractable. As an example, Halin
et al. [54] report their effort to perform a complete product-based testing of
JHipster, an open-source generator for Web applications with 48 features. It
took 8 person/month to set up the testing infrastructure, 5.2 TB of disk space,
and 4,376 h (around 182 days) computation time to test all 26,256 products. It is
therefore desirable to analyse VIS behaviours without requiring to build and run
tests for each variant by reasoning on a behavioural model rather than on the
system itself (which may not be implemented yet). However, while providing a
transition system for each variant and performing model-checking [6] or model-
based testing (MBT) activities allows to find bugs early in the process, this does
not solve per se the combinatorial explosion problem due to variability, as pro-
viding a transition system for each variant is also intractable. A family-based
approach is required to model all the variants in a compact manner without
having to enumerate them. Almost a decade ago, Classen et al. [27] defined Fea-
tured Transition Systems (FTSs) as transition systems (TSs) annotated with
combination of features on their transitions: each combination describes the set
of products that can execute the behaviour defined by the transition. It is thus
possible to model all the variants of a VIS with a unique FTS and its associ-
ated feature model. This compact formalism allows to take advantage of sharing
between variants leading to drastic reductions of the analysis time, both for
formal verification or test generation.

This paper reviews the foundations and applications of featured transi-
tion systems, connecting them to other formalisms, such as modal transition
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systems, and considering extensions such as quantities and probabilities which
are required to address V&V challenges induced by, for instance, cyber-physical
or learning systems. The rest of this paper is structured as follows. Section 3
introduces the formalism and describes how the modified VIS model-checking
problem can be solved efficiently. Section 3.4 reviews other model-checking tech-
niques for VIS, placing FTS-based verification in a broader context. Section 4
explores how the FTS formalism was used to provide a framework for model-
based testing for VIS, notably extending existing coverage criteria for transition
systems. Section 5 provides an outlook into the future of VIS V&V. Finally,
Sect. 6 concludes the paper.

2 Grazie Mille

The content of this paper, although being a synthesis of a 10-year collective
research effort, is only a very small sample of the many ways in which the work
and personality of Stefania Gnesi have inspired us. The scope of this chapter
lies at the intersection of formal methods and software product lines, two areas
to which Stefania offered both seminal contributions and devoted a continuous
effort over several decades. If that was all Stefania had done, she could already
be proud of herself and happily retire without regrets. But this is actually only
part of the story we are celebrating, a story that produced significant scientific
contributions in a variety of other areas too, including requirements engineering,
software engineering, critical systems and natural language processing; a story of
relentlessly passing knowledge to her students and peers; a story of coordinating
international research efforts; a story of organizing memorable scientific events
and of serving research communities; and, in spite of all that, a story of remaining
a humble, attentive and kind colleague with whom it is a constant pleasure to
work and discuss. Stefania does not deserve a simple applause, she deserves a
standing ovation. Thank you from all of us!

3 Verifying Variability-Intensive Systems with FTS

We model the space of variants in terms for feature models following the seman-
tics as provided by Schobbens et al. [88]. A FM fm is a tuple (F, r, DE) where
F is a set of features, r ∈ F is the root, and DE ⊆ F ×F is the set of decomposi-
tion edges between features. A product (or variant) is defined as a set of features
P = {f1, . . . , fn}, such that fi ∈ P if and only if fi is part of the product. The
semantics of a FM fm, noted [[fm]], is the set of valid products (whose features
satisfy the FM constraints), i.e. a set of sets of features: [[fm]] ∈ 22

F

. We also
assume the presence of a behavioural model Mv for all variants – which we will
formalise below – in order to introduce the VIS model-checking problem. This
problem is more complex than for single systems because it requires to verify
all the variants that can be built against a given property. More precisely, it is
desired to identify exactly which VIS variants violate the property [25].
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Definition 1 (VIS model checking). Let fm be a feature model, Mv be a
behavioural model of all variants in [[fm]], and φ a property. Model checking Mv

against φ is the problem of:

1. Determining for each product p ∈ [[fm]] whether p satisfies φ in Mv, that is,
whether the behaviour of p expressed in Mv satisfies φ.

2. Providing for each product p that does not satisfy φ a counterexample of
behaviour of p that violates φ.

A simple method to address this problem consists of modelling every valid prod-
uct of a VIS in a separate transition system (TS), and then applying single-
system model checking on each of these TS individually. This method, named
enumerative [26] or product-based [85], violates the principles of VIS engineer-
ing: the variants should not be modelled separately. Instead, one should build a
core model, which is subsequently specialized into desired variants. In addition
to the modelling task, performance is also a major concern. State explosion, a
problem inherent to model checking, is amplified when considering VISs, espe-
cially when these consist of a huge number of variants. Being part of a VIS, these
variants likely share commonalities in both their structure and their behaviour.
This observation illustrates the fact that single-system verification techniques
are suboptimal to address the VIS model-checking problem. Clearly, VIS model
checking would benefit from models that can concisely represent the behaviour
of a set of variants, and algorithms that can exploit the information about the
commonalities between these variants to speed-up verification.

3.1 A Formalism to Model VIS Behaviour

In [25,27], we proposed Featured Transition Systems (FTSs) as a compact rep-
resentation of the behaviours of a set of variants. FTSs are an extension of TSs
equipped with an FM and whose every transition is annotated with the exact set
of variants able to execute it. For the sake of conciseness, these sets are encoded
as feature expressions.

Definition 2 (Feature expression). Let F = {f1, . . . , f|F |} be a set of fea-
tures. Then a feature expression over F is a Boolean formula b ∈ 22

F

in which
each variable corresponds to a unique element of F , and whose semantics is a
function 2F → {⊥,�} encoding a set of products. A product p ∈ 2F is included
in the set represented by b, noted [[b]], if and only if b(p) = �, or equivalently:∧

f∈p f
∧

g∈F\p ¬g |= b. In this case, p is said to satisfy b, noted p |= b. We also
denote by B(px) the feature expression encoding the set of products px, that is,
B(px) =

∨
p∈px

( ∧
f∈p f

∧
g∈F\p ¬g

)
.

Definition 3 (Featured transition systems). An FTS is a tuple (S, Act,
T rans, I, AP, L, fm, γ), where

– S is a set of states named the state space;
– Act is a set of actions;
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Fig. 1. The FTS modelling the vending machine VIS.

– Trans ⊆ S ×Act×S is the transition relation, where (s, α, s′) ∈ Trans (also
noted s

α−→ s′) means that there is a transition from state s to state s′ labelled
with action α;

– I ⊆ S is a set of initial states;
– AP is a set of atomic propositions;
– L : S → 2AP is a function that associates every state with the set of atomic

propositions satisfied by this state.
– fm is an FM over a set of features F ;
– γ : Trans → 22

F

is a total function that associates a transition with a feature
expression over F .

An FTS can be seen as the merging of the TSs of all the variants that compose
the VIS. The TS model of a specific product is obtained from the FTS by apply-
ing a projection function. In simple terms, this function suppresses in the FTS
all the transitions whose feature expression is not satisfied by the considered
product [27], and then removes all feature expressions.

Definition 4 (Projection of FTS). Let fts = (S,Act, T rans, I, AP,L, fm,
γ) be an FTS and p ∈ [[fm]] be a variant. The projection of fts onto p, noted
fts |p, is the TS (S, Act, T rans′, I, AP, L) where Trans′ = {t ∈ Trans | p |=
γ(t)}.

Example 1. Figure 1 depicts an FTS modelling an VIS of vending machines,
while Fig. 2 shows its associated FM. This VIS consists of 12 variants, each of
which has its behaviour modelled by the FTS. For instance, the transition from
state 3 to state 6 is labelled with the feature expression t, meaning that it can be
executed only by variants including the corresponding feature Tea. Transition
from state 1 to state 2 is labelled with ¬f , and thus can be executed only by
variants that do not have the feature Free.

Since an FTS represents the behaviour of a set of variants, its semantics is
defined as a function that associates a variant with the traces of the correspond-
ing projection.

Definition 5 (FTS Semantics). Let fts be an FTS over an FM fm. The
semantics of the fts is a total function [[fts]] : [[fm]] → 2(2

AP )ω

such that ∀p ∈
[[fm]] • [[fts]](p) = [[fts |p]].
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Fig. 2. The FM of the vending machine VIS.

3.2 FTS Model Checking

Contrary to single systems, a binary result is not sufficient to appropriately
address the model-checking problem for VIS. In case of property violation, a
model checker is expected to identify all variants responsible for the violation.
There is thus a need for generalizing the definition of model checking. We already
gave an intuitive definition at the beginning of this paper. Here, we rephrase this
definition formally, by considering a FTS as a model for VIS behaviour.

Beforehand, let us remark that a property may only be relevant for certain
variants. For instance, a property may refer to characteristics that only occur
in a subset of the VIS. To address this requirement, we proposed to extend
temporal logic with a product quantifier, i.e. a feature expression that defines for
which variants the property must be checked [25]. The resulting variant of LTL
is defined as follows.

Definition 6 (fLTL). Let F be a set of features. An fLTL formula ψ is an
expression ψ = [χ]φ where χ is a feature expression over F and φ an LTL
formula. Let fts be an FTS over an FM fm over F and let p ∈ [[fm]]. Then p
satisfies ψ in fts if and only if χ(p) ⇒ fts |p |= φ.

We are now ready to generalise the concept of satisfiability.

Definition 7 (F-satisfiability). Let fts be a FTS over an FM fm, and ψ =
[χ]φ be an fLTL formula. Then, the variants that F-satisfy ψ in fts are encoded
as the feature expression

(fts |= ψ) = ¬χ ∨ B({p ∈ [[fm]] | fts |p |= φ}).

Conversely, the variants that F-unsatisfy ψ in fts are encoded as the feature
expression

(fts 
|= ψ) = χ ∧ B({p ∈ [[fm]] | fts |p 
|= φ}).

Given an FTS and an fLTL formula, a VIS model-checker should thus compute
F-satisfiability expressions, and associate each F-unsatisfying product with one
of its traces that violates the formula.
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3.3 Algorithms

Given its explicit notion of features, FTSs constitute a suitable formalism to
concisely model behaviour subject to variability. Yet there remains a second
challenge to solve, i.e. an efficient verification of the behaviour of a set of variants.
To achieve that, we designed algorithms to check FTS against LTL [25] and
CTL [26] formulae that exploit common transitions among variants to reduce the
verification effort. As opposed to the product-based approach, a given behaviour
is not always checked as many times as the number of variants in which it occurs.

Regardless of the logic used to express properties, the verification process
can be reduced to the computation of reachability relations. A major difference
is that the reachability of a state now depends on variability: the variants that
can reach a target state a from an initial state i are those that can execute
any sequence of transitions starting from i and ending in a. Fundamentally, the
difference with single-system model-checking is the definition of successor state.
In TS, state s′ is a successor of a given state s if and only if there exists a
transition from s to s′. In FTSs, variability can influence the set of successors
as a transition may exist for only a subset of the variants. The definition of
successor has thus to be revisited according to variants as well. It is given as
follows.

Definition 8 (Successors in FTS). Let fts = (S,Act, T rans, I, AP,L, fm,

γ) be an FTS. The successor function in fts is defined as Post : S → (S → 2(2
F ))

such that:

Post(si)(si+1) = B({p ∈ ∪α[[γ(si, α, si+1)]]})

=
∨

α

γ(si, α, si+1)

with (si, α, si+1) ∈ Trans.

Intuitively, for a given pair of states (s, s′), the function Post(s)(s′) is the feature
expression encoding the variants that can execute a transition from s to s′.

From the definition of successor, one can define reachability relation in FTS.
Similarly to successor, reachability takes the form of a function. It associates
two states, say s0 and sn, to a feature expression encoding the variants able to
reach sn from s0. These variants are those able to follow at least one path from
s0 to sn. Let s0, . . . , sn be a path in a given FTS. A variant can follow this path
if and only if it satisfies the feature expression

∧
0≤i<n Post(si)(si+1). To obtain

the variants that can reach sn from s0, we can existentially quantify the above
expression over the paths from s0 to sn.
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Definition 9 (Reachability in FTS). Let fts = (S,Act, T rans, I, AP,L, fm,

γ) be an FTS. Reachability in fts is a function R : S → (S → 2(2
F )) such that:

R(s0)(sn) = B({p ∈ 2F | ∃s1, . . . , sn−1 • p ∈ [[
n−1∧

i=0

Post(si)(si+1)]]})

= B({p ∈ [[
∨

s1,...,sn−1∈Sn−1

n−1∧

i=0

Post(si)(si+1)]]})

=
∨

s1,...,sn−1

n∧

i=0

Post(si)(si+1)

where ∀j • 0 ≤ j < n • ∃α ∈ Act • (sj , α, sj+1) ∈ Trans.

To efficiently compute the reachability function in an FTS, we designed a
depth-first search algorithm that accumulates the conjunction of the feature
expressions of all transitions executed on a given path in order to keep track of
the variants able to reach any state met along this path. The algorithm separates
the verification of different sets of variants only if they discover a behavioural
discrepancy between them. This optimisation is called late splitting [3].

Algorithm 1 formalises the computation of the reachability function of a given
state s0. The algorithm consists of a loop that iterates over a stack of pairs (s, γ)
where s is a state and γ is a feature expression. Initially, the stack contains only
the element (s0, fm) in order to start the search from s0 while considering all
the variants. At each iteration, the algorithm takes the top element (s, γ) of
the stack, computes the successors of s and associates each successor with the
variants that satisfy γ and can reach the successor from s (Lines 4–5). This
results in a set of couples (s′, γ′) ∈ S × 22

F

. For each such pair, the algorithm
first determines whether [[γ′]] contains at least one valid product; otherwise it is
not needed to pursue the search from s′. This verification is achieved by checking
the satisfiability of γ′ (Line 6). If that is the case, we enter an inner loop (Lines
7–17).

During the search, the algorithm may visit a given state more than once
(Lines 7–13). In single-system model checking, it should not pursue the search
since it already knows that the revisited state is reachable. In our case, however,
it may happen that the algorithm discovers a new path to an already visited
state s′ which is executable by variants that were not known to be able to reach
s′. Formally, let R(s′) be the feature expression encoding the set of variants
that were known to reach s′. Then ¬R(s′) ∧ γ′ encodes the set of variants that
are newly known to reach s (noted γnew at Line 8). If there is at least one
valid product satisfying this feature expression, the search continues from s′

considering only the variants in γnew (Lines 9–12). Indeed, any state reachable
from s for variants [[R(s′)]] may have already been visited for these variants.
Therefore, the paths starting from s are worth re-exploring only for the variants
in γnew. Before pursuing the exploration, the feature expression R(s′) is updated
accordingly.
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Input: fts = (S, Act, T rans, I, AP, L, fm, γ), s0 ∈ S.
Output: R(s0).

1 R ←⊥;
2 Stack ← push((s0, fm), []);
3 while Stack �= [] do
4 (s, γ) ← pop(Stack);
5 succ ← {(s′, γ′) | s′ ∈ dom(Post(s)) ∧ γ′ = Post(s)(s′) ∧ γ};
6 foreach (s′, γ′) ∈ succ • γ′ �|=⊥ do
7 if s′ ∈ dom(R) then
8 γnew ← ¬R(s′) ∧ γ′;
9 if γnew �|=⊥ then

10 R(s′) ← R(s′) ∨ γ′;
11 push((s′, γnew), Stack);

12 end

13 end
14 else
15 R(s′) ← γ′;
16 push((s′, γ′), Stack);

17 end

18 end

19 end
20 return R

Algorithm 1: Reachables(fts, s0)

The theoretical complexity of the above algorithm is given as follows.

Theorem 1. [25] Let fts be an FTS over a set of features F . The worst-case
time complexity of computing Algorithm 1 is bounded by O(|fts|.22.|F |).

Intuitively, in the worst-case each valid product has a different behaviour start-
ing from the initial state. In this case, Algorithm 1 behaves as the product-based
approach. Moreover, the number of valid variants is in the worst-case the size
of the power set of F , i.e. 2|F |. Furthermore, there is an overhead in the FTS
algorithm that does not exist in the product-by-product method: At each itera-
tion, a satisfiability check on feature expression is performed, which also has a
time complexity of O(2|F |). Although the FTS algorithm has a worse theoret-
ical complexity, experiments tend to show that in practice it outperforms the
product-based approach [23,25,26]. The FTS theory is thus a solid candidate
solution for the VIS model-checking problem.

3.4 Related FTS-Based Verfication Work

Modal Automata, i.e., automata with optional and compulsory transitions, pre-
cede FTS as a formal model for software product lines. As an example, in [49],
Gnesi and Fantechi proposed a behavioural model, namely the Extended Modal
Labeled Transition Systems (EMLTS), as a basis for the formalisation of the
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different notions of variability usually present in the definitions of product fam-
ilies. In particular, an EMLTS is able to define a family of products by telling at
any state of the system whether transitions are optional or compulsory for the
products of the family. The work was then pursued by Leucker and co-authors
[52] and compared with FTS in [4]. One of the main drawbacks of EMLTS is
that there is no causality on transition choice from state to state. This causal-
ity is captured by FTS constraints and also by a constraint-based extension
of EMLTS proposed in [7,8], but without the family-based analysis. It should
be also noted that, contrary to FTS, EMLTS have not been extended to the
quantitative setting.

Our FTS formalism has been extended in various directions. The first of them
was to consider other types of logic in order to specify product line requirements.
As an example in [24], we have showed how to extend symbolic model-checking
of computational tree logic to FTS. We showed how to encode features as extra
variables in BDDs representing symbolic behaviors of multiple products without
blowing up the representation. Later, in [10], Ter Beek et al., have showed how to
consider the entire mu-calculus. Their main contribution was to introduce μLf ,
a logic that combines mu-calculus modalities with feature expressions. They
showed how to define and model-check this logic on FTS. Their work has been
implemented in a tool called mCRL2 [96].

In parallel, we have also extended our approach to conformance model-
checking (also known as refinement-based model-checking), that is the problem
of comparing the behaviors of several products. Simulation relation allows us to
decide whether all behaviors of a system are covered by those of another system.
In product lines, the problem reduces to check if all products from one line are
covered by products from another line. One way to do so is to perform a pair-
wise comparison between the products of the two lines, which is expensive. In
order to avoid this enumerative comparison, we have showed how to generalize
the notion of simulation from systems to family. The work, which is presented
in [31], shows clear benefit in using this approach. Branching bisimulation for
FTS was also studied by Belder et al. [11]. Later, in collaboration with Univer-
sity of Waterloo Canada, we have showed that these new relations can be used
to quantify the impact of change when introducing or removing features from
a given system. This was one of the first extensions of FTS has been used to
handle problems that are not related to product lines. Indeed, here features are
used to label behaviors of a system, not to distinguish products in a specific line.
Results related to this topic are available in [5].

Abstraction is a technique that permits to reduce the size of a system by
merging states or transitions. The resulting system is generally smaller and eas-
ier to verify. Abstraction is behaviorally conservative, but may introduce extra
fake behaviors. In [32], we have showed how to abstract states and transitions
of FTS. The situation is more complex than for single systems. Indeed, we need
not only to merge states, but also to simplify formulas representing set of fea-
tures over FTS’s transitions. In order to remove fake behaviors (when needed),
we have entirely redeveloped a CEGAR-based model-checking for FTS. Another
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CEGAR procedure was developed by Wasowski for LTL and latter CTL [43–45].
Contrary to us, they only focus on abstracting features, but not states. Their
approach uses games and modal automata as FTS abstractions, hence show-
ing that FTS is practically more convenient than modal automata to represent
complex behavioral relations between products.

Another trend has been the one of extending FTS with quantitative infor-
mation. The first attempt was when we showed how to combine FTS and timed
automata in order to handle timed product lines. In [34], we have showed how
to combine timed constraints of real-time clocks with feature constraints. We
have then showed that the model-checking procedure from [25] applies directly
to our case by using the well-known region construction from timed automata.
Our timed extension has been reused and extended in various directions. As an
example, Beohar and Mousavi introduced IOFTS that is an input/output exten-
sion of timed FTS for model-based testing of software product lines [14]. Their
main contributions were to define a notion of test suite and test cases generated
from an IOFTS. They also defined two notions of refinement, one at the level of
IOFTS and another one at the level of test suites.

Later, probabilistic extensions of FTS were also considered. In [86], we have
combined FTS with stochastic information coming from a Markov Decision Pro-
cess representation of the environment. In this context, one has to compute
which product satisfies a given requirement with a specified probability. We
have defined family-based algorithms to analyze the resulting quantitative FTS.
One of them directly extends the classical algorithm for bounded quantitative
logic. The other one uses parameter synthesis in stochastic systems to extract
products that do satisfy a quantitative behavior. In [39], we have showed how
learning algorithms and Markov Decision processes can be used to abstract envi-
ronment behaviors. We then showed how the result can be used to restrict FTS
behaviors in a model-testing based approach. Our work also paved the way for
compositional reasoning and analysis of probabilistic queries for software prod-
uct lines. In [47], Baier et al. give a clear adaptation of compositional reasoning
to this context. This is implemented in the ProFeat tool [21] that uses similar
techniques to those in [86]. It is worth mentioning that other research groups
are also working of verifying stochastic and even quantitative behaviors of prod-
uct lines. As an example, in [9,89], Ter Beek et al. have proposed an algebra to
defined quantitative relations between features. This algebra is static in the sense
that it relates features with quantitative information (cost, constraints on costs,
etc.) and dynamic in the sense that it allows us to specify when features can
appear and disappear in system’s execution at runtime (hence opening the door
to the analysis of dynamic software product lines). The verification process used
in these works relies on a dynamic extension of statistical model-checking [66].

In a series of recent works e.g., [79], we have also extended FTS to han-
dle quantitative problems such as long run average. Quantitative problems were
already handled at feature diagram level, but not yet at behavioral level. Unfor-
tunately, the family-based approach advantages decrease in this context. Indeed,
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those weighted automata-based problems require to compute specific quantities
that differ from products to product. A solution to this problem could be to use
abstraction-based approaches over quantities.

4 Testing Variability-Intensive Systems with FTSs

In this section, we focus on Model-Based Testing (MBT) [93] at the SPL level.
Test cases are defined during domain engineering [84] for the SPL by associating
each test to the set of products able to execute it. Intuitively, if one wants to test
a particular product, she will consider only the tests associated to that particular
product. In the other way around, if one wants to test an SPL, she will start by
building the product with the highest number of associated tests and execute
those tests on that product.

MBT requires to define a model of the expected behaviour of the System
Under Test (SUT), i.e., a specification, that serves as input to an automated test
suite selection tool. The model should be small enough to be cheaper than the
analysis of the actual system, but accurate enough to describe the characteristics
to test. The tool uses this model to generate a sequence of input (i.e., a test case)
and an oracle for each one of those sequences. For most systems, selecting all
the possible test cases from the model is intractable. The test engineer relies
on selection algorithms that maximize a given coverage criterion, measuring the
adequacy of a test suite [73].

4.1 Test Concepts for FTSs

Since FTSs are derived from TSs, a natural starting point to adapt model-based
testing in the context of software product lines is to consider existing coverage
criteria for transition systems [93] and extend them to make them meaningful
with respect to FTSs.

Abstract Test Case over an FTS. In an MBT approach, test cases are
automatically selected from a model of the system under test. This derivation
is done in several steps: first, abstract test case are selected from the model,
an FTS in our case, using a given criterion; those abstract test cases are then
refined, using additional information in order to be executable by the SUT. The
remainder of this section cover the first step: abstract test case selection.

First, let us define the notion of abstract test case for FTS. We define an
abstract test case over an FTS as a sequence of actions from this FTS, such
that there exists a sequence of transitions in this FTS with the given actions.

Definition 10 (Abstract test case). Let fts = (S, Act, T rans, I, AP, L,
fm, γ) be an FTS. An abstract test case t is a finite sequence (α1, . . . , αn), where
α1, . . . , αn ∈ Act and there exists a sequence of transitions in trans such that

∃i ∈ I : i
α1−→ sk

α2−→ . . .
αn−−→ sl
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Positive and Negative Abstract Test Cases. We distinguish two kinds of test
cases: positive test cases trigger a desired/expected behaviour of the system
under test; and negative test cases trigger an undesired behaviour of the system
under test [93]. At the SPL level, a positive abstract test case is defined as a
sequence of actions executable by the fts (i.e., executable by at least one prod-
uct), while a negative abstract test case is a sequence of actions not executable
by the fts (i.e., not executable by any product). Once concretized (i.e., trans-
formed into executable code) [95], negative abstract test cases typically represent
sequences of actions that every product of the product line should forbid. Note
that a positive test case for a SPL may become a negative test case for one par-
ticular product of the SPL if this product is not allowed to exercise the behavior
described in the test case. In the remainder of this section, we focus on test case
selection at the SPL level.

In a LTS (lts), an abstract test case t = (α1, . . . , αn) is executable, denoted
lts t=⇒, if there exists a sequence of transitions starting from an initial state
and labelled with α1, . . . , αn [91,92]. For an FTS (fts), to be executable, the
sequence of transitions must moreover have feature expressions compatible with
the associated FM (or its projection on a subset of the product line if one wants
to test only a given set of products). In other words, when selecting test cases
for a product line, a sequence of actions is executable by fts if there exists at
least one product (p) which, when fts is projected onto p (denoted fts |p), is able
to execute it: (

fts
α1,...,αn=⇒

)
⇔

(
∃p ∈ [[fm]] : fts |p

α1,...,αn=⇒
)

In testing, unlike model-checking [6], we only consider finite sequences of
actions. Since FTS (as LTS) do not have an observable final/accepting state per
se, in order to decide if a sequence of actions represents a desired behaviour
of the system, we chose to consider the initial states of an FTS as accepting
states, observable for the tester (contrarily to Tretmans et al. [91,92], we do not
partition the set of actions into inputs and observable outputs, this will be part
of our future work). Positive abstract test cases have to end their execution in an
initial state (e.g., state 1 in the soda vending machine FTS) in order to observe
that the test case was executed successfully.

Definition 11 (Positive abstract test case). Let fts = (S, Act, T rans, I,
AP, L, fm, γ) be an FTS. A positive abstract test case t = (α1, . . . , αn), where
α1, . . . , αn ∈ Act, is a finite sequence of actions such as there is at least one
product from fm able to execute t, and this execution ends in an initial state:

∃p ∈ [[fm]],∃i ∈ I : fts|p
t⇒ i

Definition 12 (Negative abstract test case). Let fts = (S, Act, T rans, I,
AP, L, fm, γ) be an FTS. A negative abstract test case t = (α1, . . . , αn), where
α1, . . . , αn ∈ Act, is a finite sequence of actions such as for every product from
fm, the product is not able to execute t or this execution does not end in an
initial state:

∀p ∈ [[fm]], �i ∈ I : fts|p
t

� i
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When derived from the soda vending machine FTS, a positive abstract test
case has to start from 1 and end in 1 and only fire transitions with compatible
feature expressions. For instance, abstract test case (free, soda, serveSoda, open,
close) is a positive abstract test case, while (free, soda, serveSoda) is a negative
abstract test cases as it does not end in an initial state when it is executed on
the FTS (and hence one cannot observe if the test is successfull or not). Other
negative abstract test cases include sequences of actions that mix the behaviour
of two incompatible products.

In the remainder, we mainly focus on positive abstract test cases and simply
write test case. A test suite, defined for a SUT, is a set of test cases.

Test Suite Product Selection. When abstract test cases are concretized,
the result (i.e., concrete test cases, represented as a sequence of operations on
the system) has to be executed on one or more products of the SPL. The set
of products able to execute a test case may be calculated from the FTS (and
the FM). It corresponds to all the products (i.e., set of features) of the FM
that satisfy all the feature expressions associated to the transitions fired by the
abstract test case when it is executed on the FTS:

Definition 13 (Test case product selection). Given an FTS fts = (S, Act,
T rans, I, AP, L, fm, γ) and a positive abstract test case t = (α1, . . . , αn) with
(α1 , . . . , αn) ∈ Act, the set of products able to execute t is defined as:

prod(fts, t) = {p ∈ [[fm]] | ∃i ∈ I : fts|p
t=⇒ i}

From a practical point of view, the set of products contains all the products sat-
isfying the conjunction of the feature expressions γ(sk

αi−→ sk+1) on the path(s)
of t and the FM fm. When fm is Boolean, it may be transformed to a Boolean
formula [38]. The existence of a product for a test case is equivalent to the
satisfiability of the following formula, that can be checked by a SAT solver:

∨

pt∈paths

(
npt∧

i=1

(
γ(sk

αi−→ sl)
)
)

∧ fm

For instance, the set of products for the test case (free, soda, serveSoda, open,
close), derived from the vending machine FTS, contains all the products of the
SPL that offer free soda. Similarly, for a test suite, we have:

Definition 14 (Test suite product selection). Given an FTS fts = (S, Act,
T rans, I, AP, L, fm, γ) and a test suite s = {t1, . . . , tn}, where t1, . . . , tn are
positive abstract test cases, the set of products able to execute the test suite:

prod(fts, s) =
⋃

ti∈s

prod(fts, ti)

If we have a test suite (s) with two test cases (free, soda, serveSoda, open,
close) and (free, tea, serveTea, open, close), the set of products contains all the
products of the SPL that offers free soda or free tea.
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We will consider that for a given test suite (s), a set of products (M) is
adequate, if M contains enough products to execute the test cases in s:

Definition 15 (s-adequate set of products). Let fts be an FTS and s =
{t1, . . . , tn} be an abstract test suite where t1, . . . , tn are positive abstract test
cases. The set of products M is s-adequate, denoted M

s=⇒, if each test case in
s may be executed by at least one product in M :

∀t ∈ s : ∃p ∈ M,∃i ∈ I, fts |p
t=⇒ i

Since one of the main concerns in SPL testing is to reduce the number of
products needed to execute the tests, we also define the selection of the minimal
s-adequate set of products required to execute a test suite:

Definition 16 (P-Minimal test suite product selection). Let fts be an
FTS and s = {t1, . . . , tn} be an abstract test suite where t1, . . . , tn are positive
abstract test cases. A minimal s-adequate set of products needed to execute the
test suite, denoted mprod(fts, s) = M , is a subset of prod(fts, s) such that M is
s-adequate and there is no subset of M that is s-adequate:

(
M

s=⇒
)

∧
(

∀M ′ ⊂ M,M ′ s


=⇒
)

For instance, there are two products able to execute all the test cases in
the test suite s: one that allows to cancel purchase and one that doesn’t. The
p-Minimal set of products for s is a set with only one of those two products. The
decision of the products to include (or not) should be taken by the test engineer,
depending for instance on the cost linked to the derivation of each product.

4.2 Selection Criteria

In order to efficiently select test cases, the test engineer has to provide selection
criteria [73,93], defined hereafter as a function, returning for a given FTS and
a test suite, a value between 0 and 1 specifying the coverage degree of the
executable abstract test suite over the FTS: 0 meaning no coverage and 1 the
maximal coverage.

Definition 17 (coverage criterion). A coverage criterion is a function cov
that associates an FTS and a test suite over this FTS to a real value in [0, 1].

Structural Coverage. Classical structural coverage criteria are expressed
using the structural elements of the model [73,93] (in this case, FTSs) covered
by the execution of a test case.

Definition 18 (State/All-states coverage). The state coverage criterion is
related to the ratio between the states visited by the test cases pertaining to the
test suite and all the states of the FTS. When the value of the function equals
to 1, the test suite satisfies the all-states coverage.



300 M. Cordy et al.

Definition 19 (Action/All-actions coverage). The action coverage crite-
rion is related to the ratio between the actions triggered by the test cases pertain-
ing to the test suite and all the actions of the FTS defined. When the value of
the function equals 1, the test suite satisfies all-actions coverage.

Definition 20 (Transition/All-transitions coverage). Transition coverage
is related to the ratio between transitions covered when running test cases on the
FTS and the total number of transitions of the FTS. When this ratio equals to
1, then the test suite satisfies all-transitions coverage.

Definition 21 (Transition-pair/All-pairs coverage). The transition-pairs
coverage considers adjacent transitions successively entering and leaving a given
state. When the coverage function reaches the value of 1, then the test suite
covers all-transition-pairs.

Definition 22 (Path/All-paths coverage). Path coverage takes into account
simple executable paths (i.e., paths that does not fire the same transition twice),
that is sequences of transitions starting from and ending in an initial state. If
the coverage function value computing the ratio between the number of simple
executable paths covered by the test cases and total number of simple executable
paths in the FTS is 1, all-paths coverage has been reached.

The all-path coverage is the strongest coverage criterion. It specifies that each
simple executable path in the FTS should be followed at least once when exe-
cuting the test suite. Depending on the FTS, this coverage criterion might not
be scalable.

Dissimilarity-Based Coverage. Dissimilarity testing is a technique used to
select a test suite among all possible test cases, which aims to maximise the fault
detection rate by increasing diversity among test cases [20,55]. This diversity is
characterized by a dissimilarity distance defined over the different test cases.
For instance, Henard et al. [57] applied dissimilarity testing to SPL in order to
sample and prioritize products to test. The idea was to mimic the combinatorial
interaction testing (CIT) sampling for SPLs [69,83], in which valid combinations
of features are covered at least once.

Applied to FTS, dissimilarity-based coverage extends Henard et al.’s
work [57] by formulating the abstract test case selection as a bi-objective prob-
lem [40] where one wants to maximize dissimilarity between the products, but
also the exercised behaviors. Formally, we define the dissimilarity between two
test cases as follows:

Definition 23 (Test cases dissimilarity). Given an FTS fts and two test
cases t1 = (α1, . . . , αn) and t2 = (β1, . . . , βn) derived from fts, the dissimilarity
between t1 and t2 is defined as:

diss(fts, t1, t2) = dissp(prod(fts, t1), prod(fts, t2))
⊗ dissa((α1, . . . , αn), (β1, . . . , βn))
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Where dissp : [[d]] × [[d]] → [0, 1] computes a dissimilarity distance between the
products, dissa : Act+ ×Act+ → [0, 1] computes a dissimilarity distance between
the actions of the test cases, and ⊗ : [0, 1]× [0, 1] → [0, 1] is an operator combin-
ing the products and actions distances to return a global dissimilarity distance
between the two test cases.

The dissimilarity between products (dissp) may for instance be the Jaccard index
(i.e., the the ratio between the number of products common to prod(fts, t1) and
prod(fts, t2), and the total number of products in both) [57,58]. In our previous
work [40], we defined several dissimilarity distances dissa for the actions executed
by two test cases (including the Jaccard index which gave best results in our
evaluation) and used Definition 23 to drive the selection of abstract test cases
using a (1+1) evolutionary algorithm [46].

4.3 Test Case and Test Suite Minimality

Usually, when performing test case selection, one wants to have a test suite as
small as possible while ensuring the best coverage. Contrary to single systems
where only the size of the test suite is taken into account, when performing SPL
testing, we also have to consider the number of products needed to execute the
test suite. We define the size of a test suite as the number of transitions triggered
by its test cases.

Definition 24 (Test suite size). The size of a test suite s corresponds to the
number of transitions triggered in a FTS fts when executing the test cases of s
on fts, denoted

fts s=⇒
This allows to differentiate a test suite s1 with test cases only triggering a min-
imal set of transitions to satisfy a coverage criterion from a test suite s2 also
satisfying this coverage criterion, but with longer test cases triggering transitions
that do not contribute to the coverage. For a given FTS fts, we denote s1 < s2
if (

fts s1=⇒
)

<
(
fts s2=⇒

)

As opposed to current practice, the size of the test suite does not take the
number of test cases into account. Two test suites with the same size may have
different number of test case. This metric is more representative of the behaviour
of the SPL covered by a test suite. As for test suites, we define the size of a test
case as the number of transitions triggered by this test case.

Definition 25 (Test case size). The size of a test case t corresponds to the
number of transitions triggered in a FTS fts when executing t on fts, denoted

fts t=⇒
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Depending on the product line under test, the test engineer decides if the test
suite has to contain lots of small test cases, to ease the debugging process when
a test case fails for instance, or few longer test cases, if the setup required to
execute each test is expensive for instance.

For such a distribution of test cases sizes in a test suite, the selection process
compromises between the size of the test suite and the number of products
needed to execute this test suite. We define the former as the minimal test suite
property, and the latter as the P-minimal test suite property.

Property 1 (Minimal test suite). A test suite s over a given FTS fts = (S, Act ,
trans, i, d, γ) is minimal w.r.t. a selection criteria cov iff � s′ such that s′ < s
and cov(fts, s′) ≥ cov(fts, s).

Property 2 (P-minimal test suite). A test suite s over a given FTS fts = (S, Act ,
trans, i, d, γ) is product-minimal (p-minimal) regarding a selection criteria cov
iff � s′ such that (cov(fts, s′) ≥ cov(fts, s))∧(#mprod(fts, s′) < #mprod(fts, s)).

In other words, a test suite is minimal if there exists no smaller test suite
with a better coverage, and a p-minimal test suite represents the minimal set of
test cases (with the best coverage) such that the number of products needed to
execute all of them is minimal.

4.4 Related Work

The first approaches of SPL testing considered the impact of the intertwined
domain engineering and application engineering processes on test planning,
design and execution activities [74,84]. Early contributions focused notably on
the relationship between SPL use cases [17] and tests [18]. In the latter, Bertolino
and Gnesi adapt the SPL use cases into test plans with tags. These tags allows
to specify which scenarios and which properties must be tested depending on the
activated features (mandatory, alternative, optional, etc.). Another approach is
to combine high-level “test patterns” during product derivation and synthesize
such scenarios as LTS in order to take advantage of model-based test generation
techniques [76]. Incremental testing approaches have also been more recently
adapted in the SPL context [63,70,81,94]. For example, Lochau et al. [68,70]
proposed a model-based approach that shifts from one product to another by
applying deltas to state machine models. These deltas enable automatic reuse
and adaptation of the test model and derivation of retest obligations. Oster
et al. [81] extend combinatorial interaction testing with the possibility to specify
a predefined subset of products in the set of products to test. These approaches
assume that we know already which products to test.

Sampling techniques, such as t-wise approaches [28,29,59,83], strive to
answer to this question by exploring configurations allowed by the feature model.
These techniques are based on the systematic coverage of the interaction of two
more features, a criteria that has been shown empirically to cover 80% of bugs
[64]. T-wise sampling being NP-complete in the presence of constraints, various
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heuristics have been proposed [71], from greedy algorithms [28,59] to meta-
heuristics [48,50]. Meta-heuristics are also at the heart of dissimilarity sampling
techniques that maximize distances between configurations [1,57]. There are also
approaches that combines several objectives (coverage, cost of configurations,
etc.) [53,56,87].

Efforts to combine sampling techniques with modelling ones (e.g., [69]) exist.
These approaches are product-based, meaning that they may miss opportunities
to reuse tests among sampled products [85]. There are also approaches focused
on the SPL code by building variability-aware interpreters for various languages
[61]. Based on symbolic execution techniques such interpreters are able to run
a very large set of products with respect to one given test case [77]. Cichos
et al. [22] use the notion of 150% test model (i.e., a test model of the behaviour
of a product line) and test goal to derive test cases for a product line but do
not redefine coverage criteria at the SPL level. At the code level, Li et al. [67]
focuses on test specification and values reuse from one product to another by
using a genetic algorithm that integrates software fault localization techniques
and structural coverage of the program. Finally, Beohar et al. [13,15,16] propose
to adapt the ioco framework proposed by Tretmans [91] to FTSs.

As we have seen, the FTS formalism offers an ideal language to study model-
based testing of SPLs. Though we initially focused on family-based approaches
to exploit the sharing opportunities amongst test cases, the impact of sampling
techniques can be assessed and we can envision both in a multi-objective setting
[40]. We believe that the FTS formalism, natively equipped with features as a
first-class concept, is pivotal to inter-model verification support and supports
combination of quality assurance techniques both at the domain and application
engineering levels.

5 Perspectives

Ten years after the inception of featured transition systems, we (and others)
demonstrated its relevance to lay the foundations for model-based and formal
quality assurance of variability-intensive systems. This in turn enabled us to
derive efficient algorithms and to integrate them in the ProVeLines and ViBES
frameworks [36,42]. In this section, we would like to discuss some perspectives
that would possibly lead us to work on and extend FTS for next decade.

5.1 Optimisation of Quality Requirements

The initial endeavour surrounding FTS and the work presented in this paper
mainly targets the verification and validation of functional requirements in VIS.
FTS-based approaches for checking non-functional (aka quality) requirements
have also been targeted in the recent years, most of them focusing on one par-
ticular non-functional aspect (e.g. execution time [30,72], reliability [86], income
[80], quality of service [78]). Our recent work [65] proposes an end-to-end frame-
work to efficiently assess multiple quality attributes across all variants and find
the variant optimizing the trade-off between those attributes.
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This quest for optimum paves the way for future research that exploit sam-
pling techniques to efficiently search for such optimal variants. Our preliminary
work [33] shows that this problem is non trivial and call for new endeavour lying
at the intersection of VIS verification, configuration sampling and statistical
model checking.

5.2 Grand Verification Challenges: Cyber-Physical and Learning
Systems

The last decade has seen a tremendous increase in the integration of hardware
and software in number of connected devices and sensors, leading to the advent
of the internet-of-things (IoT). IoT has pervaded every domain of our lives from
the most useless gadget to more safety-critical Cyber-Physical Systems (CPS)
embedded in cars and planes. According to Briand et al., even a simple car
controller can be untestable [19]. Indeed, the large input space and the necessity
to evaluate the outputs continuously over a time period is not adapted to discrete
testing and verification approaches. The fact that CPS are also VIS, in the
sense that they can dynamically adapt to their environment and the difficulty
to predict this environment precisely forms an additional challenge.

Connected devices and sensors produce an enormous amount of data that are
processed by intelligent systems increasingly relying on artificial intelligence (AI)
algorithms. AI-enabled systems have shown their power in a variety of domains
from the game of Go to autonoumous driving. “With great power comes great
responsibility” is a cliché that perfectly applies to artificial intelligence (AI).
As technology is progressing faster than ever before towards software with more
and more abilities, adaptation and autonomy, the risks are becoming increasingly
apparent. Adversarial machine learning [51] has shown how to have a given AI
algorithm to misclassify a panda as a gibbon thanks to a few transformations
to the image, sometimes invisible. Slight changes in luminosity may lead to the
wrong turn on the road [90]. With recent work showing that learnability may be
undecidable, the hope of fully verifiable AI vanishes [12].

5.3 Extended FTS for Cyber-Physical and AI-Ready Systems

The aforementioned challenges suggest two research directions in order to extend
the FTS formalism and its verification and validation algorithms for these highly
complex, dynamic and configurable systems.

Anytime FTS. FTS were initially thought in the usual product line setting
where all the features and their relationships could be specified in advance ans
were not allowed to change. Adaptation to the environment and learning imply
that this assumption does not hold anymore: features will disappear and new
ones may appear as normal operation of the system. We previously envisioned
the scenario where cars receive new features such as autopilot that can be down-
loaded and activated on demand via a software marketplace [82]. Since these
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cars dynamically adapt - the behaviour of the car is itself variability-aware and
context-dependent - verifying if the introduction of a new feature is safe, the
car should itself embeds its FTS and model-checker. To be efficient, on-the-fly
reduction techniques of the verification space must be employed: for example,
Kim et al. prune statically configurations that cannot violate a given property,
reducing the number of configurations to monitor at runtime [62]. Cordy et al.
have proposed incremental verification of software product lines to deal with
partial configurations [35], though this technique has not been extended to run-
time scenarios yet. These challenges lead us to conjecture that the upcoming
techniques should be able to mix design time and runtime V&V techniques in a
seamless manner.

Stochastic FTS. The uncertain nature of the targeted systems lead us to
pursue the work on stochastic FTS and their relation with other formalisms such
as markov chains, markov decision processes or modal transition systems (see
Sect. 3.4). As we have seen, there is no predetermined winning strategy between
family-based and product-based scenarios. It has to be noted that stochasticity
does not only concern behaviour but also decisions as it is the nature of machine
learning algorithms to take decisions on probabilities rather than on logic. In
other words, V&V algorithms will have to deal with feature models that are
themselves probabilistic [37].

6 Conclusion

In this paper, we covered almost a decade of VIS modelling, verification and
testing for and with Featured Transition Systems. Initially dedicated to model-
checking it also demonstrated it suitability for model-based testing and sup-
ported applications even beyond VIS such as offering solutions to speed up the
analysis of mutants [41]. We believe that the universality and simplicity of FTS
contributed to this diversity of FTS-related contributions. From a more personal
perspective, it enabled the dialogue between the authors issued from the formal
verification and testing communities, yielding fruitful collaborations. Given the
challenges ahead, we are convinced that the combination of techniques and the
removal of the frontiers between these communities is a prerequisite to future
advances in VIS V&V and we look forward to it.
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21. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018). https://doi.org/10.1007/s00165-017-0432-4

22. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-based coverage-driven test
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