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Abstract—Embedded systems, like those found in the automo-
tive domain, must comply with stringent functional and non-
functional requirements. To fulfil these requirements, engineers
are confronted with a plethora of design alternatives both at
the software and hardware level, out of which they must select
the optimal solution wrt. possibly-antagonistic quality attributes
(e.g. cost of manufacturing vs. speed of execution). We propose
a model-driven framework to assist engineers in this choice.
It captures high-level specifications of the system in the form
of variable dataflows and configurable hardware platforms. A
mapping algorithm then derives the design space, i.e. the set
of compatible pairs of application and platform variants, and a
variability-aware executable model, which encodes the functional
and non-functional behaviour of all viable system variants. Novel
verification algorithms then pinpoint the optimal system variants
efficiently. The benefits of our approach are evaluated through a
real-world case study from the automotive industry.

I. INTRODUCTION

In many embedded systems, requirements engineering and

design activities are tightly intertwined and involve complex

multi-criteria decision-making over various concerns. As an

example, let us consider an infotainment feature in an au-

tomotive system. Specifying such a feature typically entails

defining a set of functional and non-functional (aka. quality)

requirements. Functional requirements define, for example, not

only what content should be displayed through the Human

Machine Interface (HMI), but also constraints imposed by

the hardware , like not exceeding the available memory.

Typical examples of non-functional requirements constrain

manufacturing costs or execution time. A notoriously difficult

problem is to establish whether such a set of requirements is

feasible and what is the best design to implement it.

Design options are not only constrained by the requirements

but also by the existing software and hardware architectures.

In our case, an HMI-rendering automotive system consists

of (1) a data processing application (i.e., data-flow oriented

embedded software) and (2) a resource-constrained hardware

platform (i.e., heterogeneous hardware components like non-

programmable processors and data storage units). The appli-

cation and the platform are, however, not completely fixed as

they have variation points. There are three main sources of

extensive variability. First, at the application level, multiple

data-flow variants can achieve the functional requirements,

* This work was done while Maxime Cordy was part of the U. of Namur.

differing in, e.g., the size of the flowing data chunks, the order-

ing of the operation tasks, or the choice between alternative,

functionally-equivalent tasks. Second, there exists a diversity

of configurable hardware platforms which can differ, e.g., in

memory capacities and processing pipelines. Third, there are

various ways of mapping and deploying a given application

on a specific platform, e.g., choose a processor to perform a

given task or select a memory unit to store a given data.

This threefold variability is typical in automotive and many

other kinds of embedded systems [1]. Unfortunately, it leads to

a high number of variants (1,548,288 in this particular case),

each of which represents a specific system design alternative
(or design for short), that is, a specific mapping of a specific

application variant to a specific platform variant. Among these

design alternatives, not all are able to realize the functional

requirements to the same extent, and the same holds for

the non-functional requirements. Given the sheer number of

variants, a systematic consideration of all design alternatives

is unfeasible for the software and system engineers whereas

the high level of competition in industry puts a high pressure

on them to deliver optimal solutions and do so timely [2].

Efficient automations therefore appear as a necessity.

Examples of questions the engineers need to quickly answer

are: Can the specified HMI be properly rendered on platform
X? Which feasible designs can be built with a budget of
Y? Which feasible designs can execute in less than Z time?
Which feasible designs, with a rendering quality higher than
P and a manufacturing cost lower than Q, exhibit the fastest
execution time? Which feasible designs reach the best tradeoff
between rendering quality, manufacturing cost and execution
time? Answering those questions not only requires a way to

deal with the variability-induced combinatorial explosion (see

previous paragraph), but also a way to reason simultaneously

about different types of concerns: feasibility/satisfiability and
optimality; functional and non-functional requirements; the

structure and the behaviour of the system. Although signif-

icant progress was made in the recent years to automate

reasoning on variability-intensive systems, existing solutions

only address specific facets of the problem in isolation. As

revealed by our experiments, partial solutions give suboptimal

designs, while complete but non-variability-aware solutions do

not scale. Hence the need for multifaceted, variability-aware

analyses capable of answering all the above questions.
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Without such solutions, engineers mostly resort to intuition

and experience. Theoretical analyses can be made but are time-

consuming and often turn out largely suboptimal, if not com-

pletely wrong. Simulators are sometimes provided by platform

suppliers but analyzing all system variants requires simulations

for all of them, which is unrealistic. Quick prototyping may

occur when the platform is finally supplied but it is then too

late to backtrack if the wrong platform was picked. In the end,

current practices are deemed very unsatisfactory.

These observations were made by our partner Visteon

Electronics, an international leader in automotive systems,

and are corroborated by surveys such as [3]. They formed

the motivation for the industry-academia partnership which

led to this research effort. In this paper, we propose an

approach that combines and extends existing research results

in order to provide the first tooled framework able to solve the

multifaceted problem described above. Our contributions are:

1) modelling languages based on Y-chart [4], [5] to

capture functional and non-functional specifications of

variability-intensive embedded systems that can vary at

both the application and platform levels;

2) mapping algorithms to derive, from the application and

platform models, the resulting design space (i.e. all

design alternatives) while capturing all the structural,

behavioural, functional and non-functional variations;

3) the first variability-aware model-checking algorithm to

optimize multiple behaviour-dependent quality attributes

across all variants;

4) an integrated tool chain to evaluate the functional feasi-

bility and the non-functional satisfiability and optimality

of the whole design space at once;

5) qualitative and quantitative evaluations of the approach

based on a real system developed by Visteon. The quali-

tative evaluation shows that functional and non-functional

requirements were properly captured by our framework,

and optimal system designs were correctly identified.

The quantitative evaluations assess the scalability of our

approach and give us confidence that our framework

is applicable to the majority of Visteon’s systems and

similar systems developed elsewhere in industry.

Although its motivation originates from an industrial part-

nership, our contribution is not domain specific. Our modelling

method covers a large class of variability-intensive data-flow-

oriented systems with quality attributes. Our model-checking

algorithm is language-independent and can be applied to a

broader range of variability-intensive systems.

II. INDUSTRIAL CASE STUDY

This research originates from a collaboration with Visteon

Electronics, a leading company developing solutions for the

automotive industry such as instrument clusters, infotainment

and connected vehicles. In this section, we introduce a simpli-

fied exerpt of the system we use in our evaluations (see Sec.

VIII) to further illustrate and justify our approach.

An instrument cluster generally consists of a speedometer

and other instruments which, unlike traditional analog gauges,

Fig. 1: Our instrument cluster application case study
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Fig. 2: A variable data-flow specification

appear on an electronic visual display (see Fig. 1). By applying

various data-flow image processing effects (e.g., 3D gauges,

3D view of the car), it improves the driving experience.

To achieve economies of scale, such systems are often built

and sold to car manufacturers as product lines, which have to

meet and optimize the manufacturers’ variable requirements

for an entire range of cars. To be competitive, they are highly

constrained on quality and cost. As such, one must know as

early as possible in the development whether the expected

HMI can be rendered properly on a candidate platform.

At industrial scale, the threefold variability introduced in

Sec.I (i.e. from application, platform and mapping) prevents

any product-based exhaustive feasibility checking, let alone

exhaustive reasoning/optimization on quality attributes (e.g.

cost, rendering quality, runtime). Yet, some separation of con-

cerns is intrinsically possible as data-flows can be abstracted

from the implementation by domain experts (i.e. rendering en-

gineers). Platforms are already specified by hardware experts

to organize competitive tendering on hardware providers.

Fig. 2 shows an example of data-flow specification with

quality attributes. The different processing flows that meet the

HMI functional requirements are captured by a variable data-

flow. Images are processed by graphical tasks. Image D1 can

be processed by tasks A or B. D2 has three different possible

resolutions and is processed by task D. The images produced

by A (or B) and D are then processed by task C, which

delivers the final result. Task and image resolution impacts

the HMI rendering quality. In our case, performing B instead

of A significantly improves the rendering quality. Also, as the

resolution of D2 is increased, the overall quality raises as well.

At the platform level (Fig. 3), image processing functions

A,B,C,D are provided by a non-programmable Graphical

Processing Unit (GPU) and an advanced Display Controller

Unit (DCU). Within DCU, there are three functions (A, C and D)
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Fig. 3: Platform Specification Input Model

and two buffers (R0 and R1). Directed edges denote the flows

followed by data that transit through the processing pipeline

of processors, while functions may be applied or not. The

platform also includes data storage on RAM and ROM. GPU
and RAM are optional as everything can be stored in ROM and

then rendered directly to the screen by DCU. Yet, they improve

the runtime efficiency for a higher manufacturing cost. There

is a presence condition between RAM and GPU as RAM acts

as a dedicated cache memory for GPU, while RAM can be

used without GPU, e.g., to store more data or larger images.

RAM comes in two alternative capacities (at different costs).

Similarly, RAM, GPU and ROM have two possible frequencies.

Frequency acts as a scale factor for data processing/transfer

bandwidth for processors and memories.

Our overall goal is to assist engineers in determining which

variants (i.e. alternative designs consisting of a data-flow

variant deployed on a platform configuration) of the instrument

cluster can satisfy the imposed functional (FC) and non-

functional (NF) requirements.

To ensure the executabilty of the application on the plat-

form, a first FC requirement states: “Any data required by a

task must be stored in a memory storage accessible to the

processor that processes the task”. Its satisfaction depends

only on the structure of the design, e.g. which tasks must be

processed, which tasks exchange data with each other, which

memory storage is accessible by the processors, and how

tasks (resp. data) are mapped onto processors (resp. memory

storage). Another FC requirement states that the execution of

the application on the platform must eventually terminate. This

not only depends on the structure of the design but also on

its runtime behaviour, as bad scheduling of tasks and data

transfers may cause deadlocks. Checking the satisfaction of

this requirement by a given design is more complicated, as it

requires analysing many (if not all) its executions.

In addition to FC requirements, the design must also meet

NF requirements. These commonly include a maximal manu-

facturing cost, a minimal rendering quality, and a maximal ex-

ecution time (i.e. time to render graphics on the visual display).

Manufacturing cost and rendering quality are quality attributes

which depend only on the structure of the design (e.g. size of

input data, choice between alternative tasks, components of the

platform). Execution time, however, depends on both structure

(e.g. processor frequency) and behaviour (e.g. scheduling of

tasks and memory access operations).

Those requirements are not enough, though, as market

competition forces engineers to deliver the best system to each

specific customer. Among the variants, they must thus find

those offering the best trade-off between the quality attributes.

Achieving our goal thus requires solving the problem of

efficiently identifying the variants that:

1) Satisfy the FC requirements. We further decompose this

sub-problem in two challenges: (a) checking the FC re-

quirements that depend only on the structure of the design

(challenge FCS) and (b) checking FC requirements that

depend also on its behaviour (FCB).

2) Satisfy the NF requirements, that is, checking: (a) those

that depend only on the structure (NFS) and (b) those

that also depend on the behaviour (NFB).

3) Optimize the trade-off between the quality attributes
(NFOB). This challenge requires considering all quality

attributes. Optimizing only those that depend on the struc-

ture (NFOS) is easier, but leads to suboptimal solutions

(as revealed by our evaluations).

We must solve all those challenges to give engineers the means

of making appropriate design decisions at an early stage.

III. STATE OF THE ART AND RELATED WORK

Many approaches were proposed to tackle parts of the above

challenges. First, research in variability modeling is black-box

oriented and focused on structural aspects. It attempts to assess

[6], [7] or efficiently predict [8]–[13] non-functional properties

of the whole product line, thus tackling both FCS and NFS.

Extensions of these methods with multi-objective optimiza-

tion [14]–[19] allow to find optimal variants wrt. structural

quality attributes, thereby solving NFOS. However, those

approaches lack reasoning support on the system behaviour

and are thus unable to, e.g., search for optimal schedulings.

Behavioural analyses of variable systems were addressed

by variability-aware model checking against functional re-

quirements (challenge FCB) [20]–[23] or one particular non-

functional aspect (e.g. real time [24]–[26], reliability [27],

[28], income [19], quality of service [29]). Resource-optimal

execution [30]–[33] and worst-case execution time [34] are

still determined product by product. Also, contrary to our

framework, these approaches are unable to automatically map

variable workflow specifications on configurable platform de-

scriptions in order to infer a system design space. Therefore,

applying them obliges to manually model and assess all

possible systems designs. They thus inefficiently tackle NFOB.

Even when both levels are captured in software/hardware

product lines with dependencies and constraints [35]–[40], the

expressiveness is also insufficient, because either behaviour is

not considered or only functional requirements are checked.
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Some system design frameworks [4], [41]–[48], model,

assess and optimize quality attributes (NFB and NFOB),

but do not capture nor manage all variability dimensions.

Specific techniques attempt to efficiently handle either plat-

form variability [49]–[51], application variability [52]–[55]

or deployment variability [56], but they are limited to one

dimension at a time and cannot reason on the whole problem.

Other approaches [57]–[59] tackle both functional and

platform variabilities by focusing on an optimal platform

configuration for a multi-variant application. Contrarily to our

solution, they do not find a design (i.e., a mapping of a

functional variant onto a platform configuration) that ensures

an optimal execution. Our recent work [23] can capture and

reason on variability at all three levels. It is, however, limited

to functional requirements (challenges FCS and FCB).

IV. OVERVIEW OF THE FRAMEWORK

Our approach follows the model-driven Y-Chart process [4],

[5] which explicitly separates application and platform. This

allows for the modular specification of, and the reasoning

on, the different parts of the system. As shown in Fig. 4,

our framework involves several models and processes. On the

left, the inputs are application and platform models such as

those of Fig. 2 and Fig. 3. Domain experts are expected to

model the application as an extended concurrent data-flow

model with quality attributes. The model contains the classic

structure and behaviour of the data-flow (data, task, edge)

and its variability. Additionally, platform experts provide the

platform specification as a templated concurrent component-

based system, which also captures platform variability.

First process (detailed in Sec. V): from the input models

the framework generates a variability-intensive design space
that captures all valid deployment mappings of the variable ap-

plication onto the configurable platform. A mapping basically

allocates tasks to processors and data to memory components.

Second process (detailed in Sec. VI): from the design space,

we generate representations that allow for reasoning on the

structure and the behaviour of all designs. In addition to the in-

put models, experts define the NF requirements as constraints

and a cost function representing trade-offs between quality

attributes. To relate NF requirements with the design space,

we rely on feature models with quality attributes [10], [14]

for the structural part, and on featured transition systems [22]

with added weights [60] for the behavioural part.

Third process (detailed in Sec. VII): we reuse feature-

model reasoning and apply our new model-checking algo-

rithms to identify the designs that meet the requirements (FCS,

FCB, NFS and NFB) and are optimal (NFOB). Addition-

ally, we can provide the execution traces that optimize the

quality attributes while satisfying the requirements. Such a

trace shows not only the designs able to execute it but also

the behaviour it exhibits (i.e., how the application tasks are

executed and scheduled onto the platform), thereby helping

the upcoming engineering of the designs.

V. APPLICATIONS, PLATFORMS AND MAPPINGS

To model the application, the platform and their quality

attributes, we extend our former modelling framework [23] to

support NF requirements, as it is limited to checking designs

that satisfy the FC requirements. Thus, we define formal

models for variable dataflows and configurable platforms.

Definition 1: A variable data-flow graph is a tuple V DG =

(N, P, E, Ψ, χd) where N = T ∪ D is a set of nodes (T
are tasks and D are data); P is a set of communication paths

by which data flows between producers (tasks and data) and

consumers (tasks); E ⊆ N×P×T is the set of flow processing

between producers and consumers via available paths; Ψ is

a set of attributes; χd : N → (Ψ → ⋃
ψ∈Ψ ν(ψ)) →

{true, false} is a function that associates a node n to the

set of values that (all or a subset of) the attributes in Ψ can

take, where ν(ψ) is the finite set of values that ψ can take. �
Intuitively, these graphs encode two forms of variability. The

first consists of variations in the data flow, as we allow data

paths to have multiple connected producers and consumers;

this follows the same approach as in variable workflows [57].

The second lies in the alternative attribute values that a node

can take. For example, consider again Fig. 2. We see that

datum D2 can have three size values. This corresponds

to a design variation of the application (i.e. the size of

the processed data). On the contrary, the quality of D2
represents the impact of data size on the overall quality of

the system, which is also determined by the quality value of

B. Thus, the overall quality depends on (i) the size of D2
and (ii) whether A or B consumes D1. In our case study,

the property value of the system is obtained by summing the

property values of its constituents. We make this assumption

in the rest of the paper, without loss of generality: one can use

instead other aggregation functions (e.g. average, maximum).

Our definition of χd allows one to define cross-cutting

constraints over the attribute values of a given node n. For

instance, the quality value of D2 is directly linked to its

size property: a size of 256 leads to a quality of 0,

512 to 1, and 1024 to 3. We see that χd(n) defines which

valuations of the attributes are valid altogether. This flexible

definition, akin to the notion of configuration of non-boolean

parameters [61]–[65], can express that some attribute values

are forbidden in n, and that the value of given attributes in n
restricts the values of the others.

Definition 2: A variable resource graph is a tuple V RG =
(R,C,Θ,Ψ, χr) where R = P ∪S is a set of resources (P are

processors and S are memory storage); C ⊆ (S×P )∪(P×S)
is a set of connections between processors and storage, where

(p, s) ∈ C (resp. s, p ∈ C) means that processor p writes

from (resp. reads to) storage s; Θ : 2R → {true, false}
encodes which subsets of resources constitute a valid platform

configuration; Ψ is a set of attributes; χr : R → (Ψ →⋃
ψ∈Ψ ν(ψ)) → {true, false} associates a resource r to the

set of values that the attributes in Ψ can take. �
The function χr is defined similarly to its counterpart

in variable data-flow graphs and offers the same benefits.
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Another source of variability encoded by this model comes

from the optional nature of resources, that is, two variants

of the platform may differ by their constituent resources. Θ
symbolically encodes which subsets of resources constitute a

valid platform in the form of Boolean constraints.

The third and last part of our formal model is the mapping

rules that must be satisfied to deploy any given applica-

tion variant on any given platform variant. These rules are

automatically generated from the variable data-flow graph

and the variable resource graph. A mapping allocates each

task to at least one processor function, each datum to at

least one memory storage, and each path to at least one

buffer or memory storage. A valid mapping must ensure that

the required data can be read and written by the hardware

functions using them. For each path p, producer node i and

consumer task o of p, there must exist a buffer or storage b
associated to p, a function fi associated to i, and a function

fo associated to o, such that fi can write to b and fo can read

from b.
Altogether, the two graphs and their mapping rules con-

stitute the variability-intensive design space, as they define

the set of the design alternatives that can result from a valid

deployment of a variant of the application onto a configuration

of the platform.

VI. ENABLING REASONING ON THE DESIGN SPACE

From the variability-intensive design space, we generate

intermediate representations to reason on the structure and the

behaviour of all variants and on their quality attributes.

In product-line engineering [66], structural variability is

commonly addressed by modelling features and their inter-

dependencies as a feature model (FM) [67]. Since we consider

NF requirements, we use an extension of FMs where features

have quality attributes [10], [14], [68], which we name Priced
Feature Model (PFM). Reasoning on the PFM allows for

determining which design variants satisfy the requirements that

depend on the structure of the design (FCS and NFS).

Definition 3: A PFM is a tuple pfm = (F,Q,Ψρ, η,Ψτ )
where F is a set of Boolean features; Q is a set of positive

real-valued quality attributes; Ψρ is a set of cross-cutting

constraints over F defining which subsets of features form

a valid variant; η : F × Q → R
+
0 is a function defining how

each f ∈ F changes the value of each q ∈ Q; Ψτ is a set

of constraints over Q defining what are the valid aggregated

values for a given attribute q. The semantics of a PFM is a

partial function �pfm� : 2F → Q→ R
+
0 such that (i) �pfm�

is defined only for the valid variants: F ′ ∈ dom(�pfm�) ⇔
F ′ |= Ψρ; (ii) the aggregated value of each attribute q satisfies

the constraints: ∀q ∈ Q : η(F ′, q) |= Ψτ ; (iii) each attribute is

associated with its aggregated value: �pfm�(F ′, q) = η(F ′, q)
where η(F ′, q) is the aggregated value of q in the variant

represented by F ′ ⊆ F . �
An excerpt of PFM is shown in Fig.5. Each variation point

that may occur in the application (e.g., consumer of P1 is

A or B), platform (e.g., RAM is present or not) or mapping

(e.g., D1 can be stored in ROM or RAM) gives rise to an

optional feature in the PFM. The attributes representing design

variations (e.g. the size of D2) are transformed into alternative

features, while those representing quality attributes (e.g. cost

of manufacturing) become the PFM’s quality attributes. Ψρ
results directly from the mapping rules (3a and 3b), the

presence conditions Θ between resources (5), consistency

rules requiring that alternative application node or optional

resources used in the mapping become mandatory (1,2,4), and

constraints over attribute values encoded in χd and χr. Ψτ
correspond to the NF requirements defined by the engineers.

Finally, η is obtained from χd and χr.

To check requirements that depend on behaviour, we need

to systematically evaluate all executions of all design variants.

A common approach to achieve this for a single design

is to model-check an automaton modelling the system be-

haviour [69], [70], which results from the scheduling [71]

of an application automaton on a platform automaton. These

approaches, however, cannot handle variability and are thus

limited to one system at a time. Accordingly, we propose to

generate, from our variability-intensive design space, a Fea-
tured Weighted Automaton (FWA) [60] – a recent formalism

that combines featured transition systems [22] with priced

automata [72]. Basically, FWA is a variability-aware, weighted

extension of finite state machines where each transition t
is annotated with a formula defining (i) which variants can

execute t; and (ii) conditional weight values that depend on

the variant executing t. This formula, named weighted feature

858



Fig. 5: An excerpt of the PFM corresponding to Fig. 2 and 3.

expression, allows one to represent compactly the evolution of

quality attributes as the execution of the variants progresses.

Definition 4: Let F be a set of features and {τ1 . . . τn} an

ordered set of n positive real-valued weights. Then a weighted

feature expression is a (possibly partial) function γ : 2F →
R
n
≥0 that associates a variant F ′ ⊆ F with a vector w such

that wi is the value of the i-th weight for F ′. �
Intuitively, the weighted feature expression γ associated to a

given transition t is such that a variant F ′ belongs to dom(γ)
if and only if F ′ can execute t, and γ(t) returns the value of

t’s weights for F ′. In our case, each weight corresponds to a

distinct quality attribute and represents the value added to this

attribute when F ′ executes the transition t.

Definition 5: Let T = {τ1 . . . τn} be a set of positive real-

valued, quality attributes and pfm = (F,Q,Ψρ, η,Ψτ ) be a

PFM, such that Q ⊆ T . A FWA over T and pfm is a tuple

fwa = (S, s0, sf , T, γ→) where S is a set of states, s0 is the

initial state, sf is the final state, T ⊆ S × S is the transition

relation, and γ→ : T → 2F → R
n
≥0 associates each transition

with a weighted feature expression. �
A FWA defines, for each variant F ′ ⊆ F , the set of

paths starting from s0 to sf that F ′ can execute, together

with the weight vector associated to each path: ∀F ′ ⊆ F :
�fwa�(F ′) = {(p, w) ∈ S+ × R

n
≥0} where p = s0 → · · · →

sk = sf and such that (i) p exists in fwa: ∀j : 0 ≤ j < k :
(sj , sj+1) ∈ T ; (ii) all transitions of p are executable by F ′:
F ′ ∈ ⋂k−1

j=0 dom(γ→(sj , sj+1)); (iii) w is the sum over all

associated weight vectors: w = Σk−1
j=0γ→(sj , sj+1).

Note that we assume all quality attribute values to be

positive. Negative values are supported modulo transformation.

In PFM, one can replace negative values on a feature by

positive values on the alternative features. In FWA, one can

replace negative values on a transition by positive values on

the alternative transitions.

From the design space, we generate a network of FWA,

where each source datum, task, processor and memory storage

corresponds to a distinct FWA whose states and transitions

encode the different steps of their process. Data automata

implement the process of sending the data onto a task au-

tomaton, which itself transmits the data to the automaton of

the processor that provides the function whereon the task

Fig. 6: An FWA modelling memory storage behaviour.

is mapped. The automaton of a processor models standard

processing pipeline behaviour [23]. During this processing, the

processor can store input and output data by transferring them

to its dedicated storage automaton.

An excerpt of FWA modelling storage behaviour is shown in

Fig. 6. It models memory read and write via input/output inter-

faces while checking that memory capacity is never exceeded.

Weighted feature expressions occur in the transitions of the

hardware resources automata (i.e. processors and memories)

that correspond to processing instructions and memory ac-

cesses, as these operations impact the “execution time” quality

attribute. In the excerpt, such an expression is shown in pink

and models that the increase of time depends on RAM fre-

quency. The automaton modelling all the designs results from

the parallel composition of the individual automata, which

can synchronize their transitions on specific synchronization

actions (e.g. the transfer action in Fig. 6 sends data only

when another FWA executes the corresponding action).

Our FWA differs from that of Fahrenberg et al. [60]: (i)
ours is linked to a PFM to also check structural requirements;

(ii) we support parallel composition and consider time as a

special weight in that we execute fastest actions first and

dynamically update the remaining time delay of other parallel

actions to simulate time elapsing; (iii) Fahrenberg et al. [60]

represents γ→ as a partition of the set of variants because their

verification algorithm – which is not tooled – relies on matrix

representations, whereas ours relies on antichains [73] to scale

wrt. the large state space incurred by our evaluation cases.
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VII. ALL-IN-ONE VERIFICATION AND OPTIMIZATION

Our FWA formalism allows us to design a first algorithm to

solve all challenges FCS, FCB, NFS and NFS for all variants

at once. The key idea is to perform an exploration of the state

space of the automaton in search of paths that can reach the

final state while satisfying the FC and NF requirements.

The first step filters out variants that do not satisfy PFM

constraints Ψρ and Ψτ , thereby ensuring that the structure of

the variants does not violate the requirements. Then we explore

all paths starting from the initial state. As we visit a new state,

we retain the set of variants able to execute the sequence of

transitions that led to the state. We also accumulate the sum of

the weights over all executed transitions and for all variants

and assert that these values satisfy the NF requirements. In

the end, we obtain a set of paths going from the initial to the

final state, together with, for each path p, (a) the valid variants

that can execute p and (b) the values of the quality attributes

corresponding to p and each of those variants.

This first algorithm finds all variants satisfying the require-

ments. We have to find what are the optimal variants satisfying

the requirements while providing the best values for the quality

attributes. Since these attributes can be antagonistic (e.g.,

manufacturing costs can decrease to the detriment of rendering

quality), this is assimilated to multi-objective optimization. To

drive our search for optima, we define a cost function over the

attributes: let ζ(τ1, . . . , τn) = θ1 × τ1 . . . θn × τn be our cost

function, such that θi ∈ R
+ is the coefficient associated to the

attribute τi. Then, our objective is to discover the variant that

minimizes ζ. This is achieved by modifying our exploration

algorithm in order to (i) record the optimal variants and their

associated attribute values, and (ii) stop exploring a path as

soon as all quality attributes reach a worse (i.e. higher) value.

This latter heuristics requires the cost function to be monotonic

as more states are explored along a given path; hence why we

assume that all θi and τi are ≥ 0. Negative values can be

supported by disabling the heuristics (Line 7 in Algorithm 1).

Algorithm 1 details this exploration procedure. It takes as

input a FWA, a PFM and a cost function ζ. It iteratively

computes R, the reachability relation that associates each state

s to the γ function encoding all variants that can reach s and

their associated attribute values. At first (Line 1), R contains

s0 together with γ0, such that dom(γ0) = dom(�pfm�) and

γ0(F
′, τi) = 0 for any variant F ′ and attribute τi. Then,

we start the exploration from s0 (L3–4) and iterate over the

states encountered successively (L5–20). At each iteration, we

retrieve the state s reached last, together with its associated γ
function (L6). Here, γ encodes the variants that can reach s
and associates to each variant the values of its attribute values

when following the path that led to s. If all these variants yield

a value for ζ greater than the current optimum ζ∗ (L7), we do

not pursue the exploration further from this state. Otherwise,

we distinguish between the cases where s is sf (L8–10) and

where it is not (L11–18). In the first case, we assign ζ∗ to the

minimal cost over all variants that can reach the final state. In

the second case, we compute the set of successors of (s, γ)

Input: fwa = (S, s0, sf ,→, γ→);
pfm = (F,Q,Ψρ, η,Ψτ ); ζ : ζ(τ1, . . . , τn) ∈ R

+

Output: F∗, the set of optimal variants that reach sf
ζ∗, their associated minimal cost

1 R← {(s0, γ0)};

2 ζ∗ ← +∞;

3 Stack ← [];
4 push({s0, γ0}, Stack);
5 while Stack �= [] do
6 (s, γ) ← pop(Stack);
7 if ∃F ′ ∈ dom(γ) : ζ(γ(F ′)) ≤ ζ∗ then
8 if s = sf then
9 ζ∗ ← min

F ′∈dom(γ)
ζ(γ(F ′));

10 end
11 else
12 foreach (s′, γ′) ∈ Post(s, γ) do
13 if � ∃(s′, γ′′) ∈ R : γ′ � γ′′ then
14 push((s′, γ′), Stack);
15 R← R � {(s′, γ′)};

16 end
17 end
18 end
19 end
20 end
21 F∗ ← {F ∗ ⊆ F |(sf , γf ) ∈ R ∧ γf (F ∗) = ζ∗};

22 return (F∗, ζ∗)
Algorithm 1: optima(fwa, pfm, ζ)

(L12), given by Post(s, γ) = {(s′, γ′)|(s, s′) ∈ T ∧ γ′ =
γ ⊗ γ→(s, s′)} where dom(γ1 ⊗ γ2) = dom(γ1) ∩ dom(γ2)
and ∀F ′ ∈ dom(γ1 ⊗ γ2) : (γ1 ⊗ γ2)(F

′) = γ1(F
′) + γ2(F

′).
This means that γ′ is defined only for the variants that can

reach s and execute the transition from s to s′, and it sums

the attribute values of each variant in γ with its attribute

values on the transition (s, s′). Then, we add a successor iff

it improves the reachability relation (L13), that is, if for at

least one variant, there is no element in R that gives a better

value for all attributes. This rule ensures that infinite cycles

are avoided. To do so, we use the comparison operator � over

weighted feature expressions, defined as γ1 � γ2 ≡ ∀F ′ ∈
dom(γ1) : γ1(F

′) ≥ γ2(F
′). If R is improved, we continue

the exploration (L14) and add the successor to R (L15) using a

particular union operator � that keeps R as an antichain. This

is achieved by a split-and-combine algorithm along the lines

of [24], [60], which we do not detail due to lack of space.

Finally, we return the set of variants F∗ that can reach sf
while minimizing ζ, together with the optimal cost (L21–22).

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented our framework as a toolchain combining

a new Java tool with (extensions of) existing model checkers.
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Our Java tool1 consists of two modules, each of which imple-

ments a process depicted in Fig. 4. The first one allows for

specifying a variable data-flow graph and a variable resource

graph via a fluent API. Then, it calls our mapping algorithm

to generate the design space. Second, an automata generator

takes as inputs the design space, NF requirements and the

cost function to generate an FWA with its associated PFM.

Two concrete syntaxes are used, as we can then invoke two

independent model checkers to search for optima.

One is UPPAAL-CORA [32], an established tool to carry

out cost-optimal reachability analyses that we reuse as is with

optimal settings. It takes as input a network of Linearly Priced

Timed Automata (LPTA) [74]. LPTA can be regarded as FWA

without variability, and as such can only encode the behaviour

of the variants separately. Our automata generator actually

transforms our design space into a network of LPTA in the

UPPAAL-CORA format. It also generates an additional au-

tomaton dedicated to configuring the other LPTAs before their

execution starts, by setting variables that correspond to the

variation points of the design space. We thus follow the 150%

model approach [75]. Additionally we use SPLOT’s feature

model reasoning library [76] to restrict the configuration to

valid products. Then, UPPAAL-CORA can find an execution

of a variant that reaches the accepting state while satisfying

all the NF requirements and optimizing the cost function.

The other model checker is ProVeLines [77], which can

check variability-intensive systems. We chose this tool be-

cause it was extended over the years, by both its original

developers [77] and others [19], [29], to solve multiple model-

checking problems including real-time verification [24]. We

fully implemented Alg. 1 in a new version of ProVeLines.2 To

achieve this, we first extended ProVeLines’ input language –

Promela [78] – to associate Promela statements with weighted

feature expressions. Actually, each Promela process encodes a

single FWA. Like UPPAAL-CORA, our ProVeLines extension

is able to provide the execution trace associated to an optimal

variant. The difference lies in that weighted feature expressions

allow an all-at-once verification of all variants. To encode

the structural variability, we generate a PFM in the format

supported by ProVeLines, viz. TVL [64], [79].

B. Qualitative Evaluation

Our first evaluation assesses the usefulness of our approach

for practitioners on the basis of Visteon’s instrument cluster

system (see Sec. II). More precisely, our evaluation concerns

an important module of the whole system. Yet, it remains a

real-world case that was selected by our partner as represen-

tative in terms of size, complexity and variability.

With the assistance of an expert engineer, we reverse-

modelled the variable application and platform of the existing

system. Some technical simplifications were made as we aim

at facilitating early design decisions: we do not consider data

and parameters that only have minor impact on the system’s

1https://bitbucket.org/SamiLazreg/enlighter
2https://bitbucket.org/maxcordy/provelines-cora

runtime; we abstract away from data content and consider data

sizes as the most influential factor for runtime performance;

we do not model mechanisms like internal cache replacement

policies, AXI bus and internal backup communication buffers

as these implementation details have no fundamental impacts

and are handled by engineers later in the development process.

These simplifications were deemed harmless by our industrial

expert and did not endanger the correctness of our results.

This results in an application model with two input data

types, four tasks and 32 flow processing, and in a platform

model with one ROM, one RAM, one DCU and two GPUs.

In total, the variability yields 1,548,288 candidate designs.

Our generated mapping rules reduced this number to 1,878.

By adding the NF requirements rendering quality ≥ 2 and

manufacturing cost ≤ 280, we further diminish this number to

894. By checking the behaviour against the requirements (i.e.

the end of execution is reached within 840 processing cycles)

we obtain 279 variants that satisfy all requirements. Incorpo-

rating the cost function representing trade-offs defined with

the expert (i.e. with θtime = 1, θm.cost = 10, θr.qual. = 100)

yielded 6 optimal variants with time = 642, manufacturing cost

= 140 and rendering quality = 2.

We performed the behavioural analyses using both

UPPAAL-CORA and ProVeLines, which provided the same

results for all variants. This increases our confidence that the

transformation of the design space into LPTA and Promela

is consistent. Expert’s confirmation is also needed, though,

as mistakes may originate from the input models themselves.

The expert validated that the optima returned by our tools

conform to the very best designs that the company could

produce over the past years. The quality attributes’ values

also corresponded to what is expected. Regarding execution

time (cycles), there are slight differences due to hardware

modelling simplifications; however, the numbers are close to

reality (< 10% difference) and the relative orders between

variants are preserved. In the end, the expert validated that

our approach helps make optimal design decisions that will

provide significant gains at all stages of development.

C. Quantitative Evaluations

The second part of our evaluation focuses on the efficiency

and the scalability of our approach in terms of execution time.

This is indeed essential, as the total number of variants can

be high in real-world systems. In addition to the instrument

cluster case study (numbered case #0), we constituted a

dataset of realistic topologies that were generated based on

our partner’s history. To do so, our model generator relies

on multivariate Gaussian distributions whose parameters were

settled on the basis of Visteon’s past systems. Thereby, it

ensures that the characteristics of our generated data-flow and

platform models are similar to real-world cases. Amongst

all the models we generated, we selected 11 of them that

appropriately summarize our findings. These models exhibit

different state densities (i.e. average number of system states

per variant) and variability intensities (i.e. numbers of valid

variants to check). We carried out three series of experiments
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TABLE I: Results for the three quantitative evaluations. Times are in seconds.

(1) FCS + FCB + NFS + NFB (2) NFOB (3) NFOS Priorization
Product-based Family-based P.V.L. optim UPP.-CORA ClaferMOO + P.V.L.

case density variants time explored time explored time time time # OOS inc. %

Ins. Cl. (#0) 369 1,878 22.60 693,178 3.33 305,114 2.42 5.64 0.08 10 74.10%
Gen. #1 1,561 32 0.80 49,952 0.48 45,681 0.38 18.61 = = =
Gen. #2 2,250 64 2.72 143.968 2.10 124,004 1.27 39.59 = = =
Gen. #3 3,061 243 22.11 743,823 80.54 660,348 75.79 OoM. = = =
Gen. #4 1,656 516 16.32 854,996 10.95 777,616 8.23 17.60 2.32 129 9.19%
Gen. #5 2,256 1,152 55.48 2,599,393 40.17 2,217,593 29.77 OoM. = = =
Gen. #6 1,496 1,280 38.49 1,915,264 11.81 840,711 8.65 19.89 1.37 64 40.86%
Gen. #7 2,416 2,187 144.48 5,283,792 120.83 4,593,249 89.56 OoM. = = =
Gen. #8 1,461 2,592 109.96 3,785,940 35.01 1,032,639 24.40 OoM. 17.60 324 1.39%
Gen. #9 2,273 3,168 151.87 7,201,320 69.14 3,926,395 19.58 OoM. 6.21 792 9.81%

Gen. #10 1,609 12,288 395.64 19,777,536 148.71 6,570,642 75.97 OoM. 3.62 256 64,90%
Gen. #11 1,732 34,560 1344.23 59,858,304 227.31 10,871,741 72.17 OoM. 2.90 32 95.77%

presented hereunder. Table I provides the results, such that

the results of the different series of experiments are separated

by double borders. All benchmarks were run on a MacBook

Pro 2014 with a 2,8 GHz Intel Core i7 processor and 16 GB

of DDR3 RAM. We repeated each experiment ten times and

computed the average, although random deviations were low.
Product-based vs. family-based. Our first experiments

evaluate the efficiency of our method to verify that all variants

satisfy the requirements, that is, we consider only the four

challenges FCS, FCB, NFS and NFB. We compare the runtime

of our family-based verification algorithm with an alternative,

product-based one that checks each variant separately. Both

algorithms are implemented in ProVeLines, which allows us

to compare both approaches on an equal technological ground.
The results are presented on the left part of Table I. It

depicts, for each approach and model, the time needed to check

all variants as well as the total number of states that were

explored by each algorithm. In the family-based case, fewer

states are explored since one state common to multiple variants

is explored only once. For case #0, the family-based method

outperforms the product-based one, reducing the verification

time from 22.60 seconds to 3.33. The generated models allow

us to observe that the benefits of the family-based method

grow with the number of variants. When this number is low

(#1–3), our family-based algorithm either brings insignificant

improvements (#1 and #2) or performs way worse than the

product-based approach (#3). On the contrary, for models with

higher variability (#4–11) we obtain reductions in verification

time of minimum 16% (#6), most often substantial ones. The

most impressive results are obtained for the case with the

most variants (#11 – which is also the case where variants

share the most commonalities): our algorithm is 5.9 times

faster, achieving an absolute reduction of 1,116.92 seconds.

We also see that a higher state density often reduces the gain

offered by our algorithm (e.g. cases #5 and #7). To explain

this, we analyzed the models and observed that a small number

of variants exhibit a large state space, while all the others

encompass far fewer states. The variants thus have fewer states

in common, while family-based algorithms generally perform

better as variants share more commonalities. This also explains

the poor performance of our algorithm in case #3.

Optimization in ProVeLines and UPPAAL-CORA. Our

second experiment compares the efficiency of the two model

checkers to solve challenge NFOB, that is, we compare

UPPAAL-CORA cost-optimal reachability algorithm against

our Algorithm 1. The two tools present clear differences,

notably in history (UPPAAL-CORA’s development started in

the early 2000’s, while ProVeLines was released in 2013),

in focus (cost-optimal reachability in continuous-time models

vs. family-based model checking in discrete-time models) and

in input syntax (LPTA vs. Promela). Still, we believe this

comparison can highlight interesting research directions.
Results are given at the centre of Table I. Like any product-

by-product approach, UPPAAL-CORA suffers from every

increase in the number of variants, except for cases #4 and

#6 where it luckily alleviates complexity with branch-and-

bound optimizations. It systematically performs poorer than

ProVeLines. Even worse, apart from cases #0–2, #4 and

#5, UPPAAL-CORA consumes too much memory (> 16GB)

and raises a fatal error. We assumed two reasons behind

this. First, UPPAAL-CORA does not implement partial-order

reduction [80] and thus considers all possible interleavings

between LPTAs, including during their configuration. This

creates an exponential blow-up as the number of LPTAs

increases. Second, we use a model that encodes the behaviour

of all variants and thus accumulates all their state space. Yet,

applying an alternative, product-based approach where each

variant is turned into a separate model did not solve the

problem and even led to slower times. Process interleaving

is therefore responsible. One way to circumvent this is to

assign priorities over the automata. However, in most cases,

this will cause to miss better scheduling opportunities and will

yield suboptimal results. In spite of the disappointing results

for UPPAAL-CORA, the fact that it outperforms product-

based ProVeLines on case #0 tends to indicate that combining

our family-based algorithm with UPPAAL-CORA’s efficient

search heuristics can be a promising future work.
Through these experiments, we also observe that looking

only for optima in ProVeLines, as opposed to verifying all

variants, can yield significant reductions in execution time (up

to 68% in case #11). More importantly, computing the optima

without a family-based algorithm boils down to applying the
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product-based algorithm used in the first series of experiments.

In this regard, our Algorithm 1 exacerbates the benefits of a

family-based algorithm. For the models with the most variants

(#9–11), Algorithm 1 is 5 to 128 times faster than the product-

based method. Interestingly, it seems to be way less affected

by the number of variants than the all-variant verifications.

Prioritization based on structural optima. The last part

of our evaluation studies whether the structural optima (i.e.

the solutions of NFOS) are sufficiently close to the overall

optima (i.e. the solutions of NFOB). If that is the case, solving

NFOS would yield an imperfect but relevant, cost-effective

solution, as structural optimality can be resolved statically, that

is, without requiring the exploration of a large state space. We

use the ClaferMOO tool [14], [81] to compute the structural

optima based on our PFMs. To complete the toolchain, we

extended it to generate PFMs in ClaferMOO’s format, as well

as our verifier module to retrieve the variants that are structural

optima and only allow these variants by adding a constraint

in the PFM. Then, we use ProVeLines in family-based mode

to assess the time needed to discover which structural optima

lead to the lowest cost function value, as well as the difference

between this value and that of the overall optimum.

Results are given on the right side of Table I. The first

two columns give the number of structural optima returned

by ClaferMOO, as well as the time needed to run ProVeLines

only on those structural optima. The last column gives the

increase of cost function, in percentage, due to considering

only structural optima instead of all variants. In cases #1–3,

#5 and #7, the variants differ only by their behaviour and are

thus all structural optima. For the other cases, we see that

ProVeLines’ runtime is dramatically decreased as it has to

check fewer variants. This, however, comes at the cost of a

notable increase in cost function value (up to 96%), except for

case #8 where it increases by less than 2%. We conclude that

structural optima are still far from being overall optima, and

thus are not sufficient. Yet, in some cases they can constitute

viable solutions to get a quick answer or when the state space

of the system is too large to be exhaustively explored.

D. Threats to Validity

Internal. The main threat to internal validity is the selection

of the used case study. Although it was built from specification

and feedback meetings with system and platform experts from

our partner company, it is a single case. Still, Visteon chose

it as being representative in terms of shape and complexity of

the data flow, the platform and their variability.

External. Several threats to external validity exist. First,

our scalability experiments have been conducted over large

but simulated data sets. We nevertheless expect the creation

procedures to respect the structure and behaviour of the

potential applications and platforms of our industrial partner.

More generally, we also expect the proposed approach to be

applicable in other domains where data flows can be an ap-

propriate modelling support, like stateless enterprise processes

with micro-services. On the platform side, the component-

based representation seems general enough to cover different

forms of deployment architectures, but we do not have any

evidence yet of this generalization possibility.

Second, satisfiability and optimality checking processes

depend highly on the level of detail and on the quality of

application and platform modelling. On the platform side, a

design not detailed enough could lead to loss of relevance in

the performance metrics, and could even produce false optimal

results. From the feedback we got from our industrial partner,

the level of detail is currently sufficient as it is at the level they

use to specify the platform when selecting suppliers. Still, in

other contexts, some details may be hidden due to intellectual

property management. As for applications, they are described

with data-flows that are well mastered by domain experts in

our case study, but they have been built manually. Reverse

engineering from existing application code could be envisaged

to build data-flow or at least templates of them, but their

quality would be directly related to the good organization of

existing software. More globally, as the engineers were able to

understand proposed designs that result from our framework,

machine learning technique fed by their feedback on good or

bad solutions could help when details are missing. Introducing

this in the framework remains an open issue.

IX. CONCLUSION

In many data-flow oriented embedded systems, three levels

of variability significantly increase the complexity of the

design space: variable high-level data-flows are deployed in

many different ways over highly configurable component-

based hardware platforms. We provided a modelling and

reasoning framework that unifies state-of-the-art techniques

on structural reasoning with a novel variability-aware model-

checking algorithm, which evaluates the functional feasibility,

the non-functional satisfiability and optimality on the whole

design space. This design space comes as a mapping between

two other models: one represents the variable applications with

a data-flow model complemented with quality attributes, the

other models platform variability through connected compo-

nents, also with quality attributes. We showed how the design

space is transformed into featured priced timed automata to

enable different reasoning and optimization operations.

The application of the proposed approach to a medium-scale

industrial case of an automotive instrument cluster demon-

strates its end-to-end ability to check and optimize a complex

design space. System experts revealed that, even on small data

flow and platform models, the optimal designs were non-trivial

to identify for them, giving us confidence on the relevance of

the approach. Experiments on large simulated design spaces

also show that the prototyped toolchain exhibits good scala-

bility and outperforms non-variability-aware solutions.

We believe that the models used in the framework (data-

flows and components) make the contribution potentially

applicable in different contexts. Our future works will start

with an extension of the framework to facilitate its usage,

introducing domain-specific languages for input models. We

also plan to conduct larger evaluations on different data flows

coming from various product lines of our industry partners.
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